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Abstract—This paper presents a large-area image sensing and
detection system that integrates, on glass, sensors and thin-film
transistor (TFT) circuits for classifying images from sensor data.
Large-area electronics (LAE) enables the formation of millions of
sensors spanning physically large areas; however, to perform pro-
cessing functions, thousands of sensor signals must be interfaced
to CMOS ICs, posing a critical limitation to system scalabil-
ity. This work presents an approach whereby image detection of
shapes is performed using simple circuits in the LAE domain
based on amorphous silicon (a-Si) TFTs. This reduces the inter-
faces to the CMOS domain. The limited computational capability
of TFT circuits as well as high variability and high density of
process defects affecting TFTs and sensors is overcome using
a machine-learning algorithm known as error-adaptive classifier
boosting (EACB) to form embedded weak classifiers. Through
EACB, we show that high-dimensional sensor data from a-Si pho-
toconductors can be reduced to a small number of weak-classifier
decisions, which can then be combined in CMOS to achieve strong-
classifier performance. For demonstration, a system classifying
five shapes achieves performance of >85%/>95% [true-positive
(tp)/true-negative (tn) rates] [near the level of an ideal software-
implemented support vector machine (SVM) classifier], while the
total number of signals from 36 sensors in the LAE domain is
reduced by 3.5-9×.

Index Terms—Amorphous silicon (a-Si), boosting, classification,
image detection, machine learning, sensing, thin film, thin-film
transistor (TFT), variability.

I. INTRODUCTION

L ARGE-AREA electronics (LAE) is a technology that
allows us to deposit thin films of semiconductors and

insulators at low temperature. This makes its processing com-
patible with a diverse set of materials, enabling the formation
of a wide range of sensors. Just a few demonstrated examples
of these are shown in Fig. 1, including gas sensors [1], light
sensors, strain sensors [2], and pressure sensors [3]. In addi-
tion to this, low-temperature processing makes it possible to
use substrates such as glass or plastic which can be large and
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flexible, spanning areas approaching square meters. A repre-
sentative example is X-ray imagers, also shown in Fig. 1, which
today integrate over 10 million amorphous silicon (a-Si) pixels
over planes that span 0.5 m × 0.5 m.

The ability to form diverse types of sensors and the ability to
integrate many of these, spatially distributed over large areas,
enable systems that can interface much more extensively with
the physical world. However, a key challenge in such systems is
that there now exists a large amount of distributed sensor data
that require processing and analysis.

Two possible options for processing the sensor data exist.
First, in addition to sensors, LAE also enables the formation
of thin-film transistors (TFTs), which could be used to imple-
ment processing functions. Second, all of the sensor data can
be sent to CMOS ICs for processing; this results in hybrid
systems based on, e.g., a-Si LAE and CMOS [4]. In prac-
tice, the first option is challenging because low-temperature
processing, from which LAE derives benefits in terms of sens-
ing, also results in low electrical performance of TFTs. Typical
mobilities (μ), unity current gain frequencies (fT ), and required
supply voltages are orders of magnitude worse than those of
silicon CMOS transistors.

N-channel a-Si TFTs, which are the workhorse transistors
used in flat-panel display applications today, have electron
mobilities in the area of 1 cm2/Vs, unity current gain frequen-
cies in the area of 1 MHz, and threshold voltages around 1 V
(compared to approximately 500 cm2/Vs, 300 GHz, 0.3 V, for
typical CMOS transistors). In addition, the TFTs exhibit high
variability in parameters such as threshold voltage and mobility.
This can be seen in Fig. 2, where these quantities are measured
over an array of 100 devices that we have fabricated on a single
glass substrate.

Given the disparity in electrical performance and reliabil-
ity between TFTs and CMOS transistors, the hybrid system
option is appealing. However, this now requires a potentially
large number of physical interfaces between the two different
technologies.

As an example, X-ray imagers commonly available today,
address this by employing an active matrix, whereby pixels are
read out row/column-by-row/column. This can substantially
reduce the number of interfaces (by roughly a square-root
factor). However, for megapixel imagers, this still implies
thousands of interfaces, and further, active-matrix architectures
are applicable to highly regular sensor arrangements, not the
irregular arrangements over large areas being envisioned for
many LAE systems [4], [5]. Thus, alternate approaches that
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Fig. 1. Examples of thin-film sensors [1]–[3] and a large-area X-ray imager [17].

Fig. 2. Variation in mobility and threshold voltage across 100 TFTs on a single
glass sample.

Fig. 3. Reduction in interfaces from the large-area panel is achieved using
simple TFT circuits.

have the potential to greatly reduce the number of interfaces
are of high interest.

In this paper, we explore an approach that addresses this
interface challenge by taking data from many image-sensor
pixels and processing them using simple, low-performance,
variation-prone thin-film circuits [6]. This results in a reduced
number of signals, which can then be transmitted from the
large-area panel for image detection and classification. This
approach is illustrated in Fig. 3. The driving insight is that a
reduction in interfaces is achieved by transmitting only higher
level information, more closely tied to the application of inter-
est, as opposed to the raw pixel data. Systems where the raw
pixel data may not be of interest include application-specific
custom imagers whose role is to identify the presence of a spe-
cific sensed attribute (an object on a sensing plane, a heat zone
sensed in a specific location, or a particular pressure configura-
tion on a surface). In Section II, we identify such information,
which corresponds to elemental classification decisions derived
using low-performance devices. These decisions are leveraged
in a machine-learning algorithm to derive a high-accuracy clas-
sification decision. In Section III, we describe the TFT circuits

Fig. 4. Architecture of a machine-learning classification system.

that implement the simple classifier blocks required. Finally, in
Section IV, we demonstrate the complete image-detection sys-
tem, classifying five shape classes with a performance close to
that of a support vector machine (SVM), a widely used strong
classifier whose complexity precludes implementation using
TFT circuits.

II. MACHINE LEARNING TO ENABLE TFT-BASED

CLASSIFIERS

A number of algorithms have emerged from the domain of
machine learning that enable data-driven methods for modeling
and analyzing application signals. This enables the creation of
models for inference from data that may be too complex to oth-
erwise model analytically. A number of these algorithms have
been previously implemented using analog circuits [7], [8]. The
particular inference we focus on in this work is the classifi-
cation of shapes from image-sensor signals. Using machine-
learning algorithms for classification, we can employ previ-
ously observed instances of data to create a model by which
classification can be performed on future instances of data.

The basic operation of such a classifier is shown in Fig. 4,
consisting of two key components. The first component is a
trainer, which is used to learn the classification model from pre-
vious data; this is typically performed off line. The second is
the classifier itself, which uses the model to classify incom-
ing data continuously and in real time. Fig. 4 illustrates the
example of shape classification, detecting rings from all other
shapes. A training set provides feature vectors along with labels
of the shapes to the trainer. The trainer uses data mapped in a
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Fig. 5. Measured image data illustrates the inadequacy of linear decision
boundaries, compared to more flexible boundaries such as that obtained with
an SVM classifier.

feature space, along with associated labels, to form a decision
boundary. The representation of this boundary, referred to as
a model, is then fed to a classifier, which distinguishes rings
from all other shapes from the incoming sensor data. Depending
on how the data from the two classes (in this case rings vs.
other shape) is distributed in the feature space, a flexible and
potentially complex decision boundary may be required. This
is discussed in greater detail next, using actual data from the
proposed system.

A. Strong and Weak Classifiers

In machine learning, there exist the concepts of a strong clas-
sifier and a weak classifier. A strong classifier is one that can be
trained to fit arbitrary data distributions, while a weak classifier
is one that cannot be. Weak classifiers typically result in a high
rate of errors, dependent on the precise distribution of data in
the application. For this reason, weak classifiers are often inad-
equate, and our ultimate objective is to create a strong classifier.

To motivate this more concretely, we present first a lin-
ear classifier, which is a weak classifier. A linear classifier is
implemented by applying a weight, derived from training, to
each input feature and then taking a linear combination over
the weighted features; mathematically this amounts to a dot-
product operation between the feature vector �x and a model
vector �c, derived from training. The result of the dot product is
then compared to a threshold b, in order to make classification
decisions

y =

{
rings, �c · �x > b

other shapes, �c · �x ≤ b.
(1)

Fig. 5 shows data corresponding to the actual shapes from
the image-detection system demonstrated (specifically, rings
vs. all other shapes). The feature vector is the 36 raw out-
puts from image-sensing pixels (photoconductors), onto which
shape images have been illuminated. While the actual feature

Fig. 6. Architecture of the AdaBoost algorithm.

vector dimensionality is 36, to help visualize the data, prin-
cipal component analysis is performed, projecting the data
vectors onto two principal components. A linear-classifier deci-
sion boundary, obtained from training, is also shown. As seen,
such a boundary is inadequate, resulting in many of data points
being misclassified. A more flexible decision boundary from a
strong classifier is required, as obtained from training an SVM
classifier with radial-basis function (RBF) kernel, also shown
in Fig. 5. Unfortunately, such a classifier requires the ability
to reliably perform complex computations, and thus its direct
implementation is not feasible using TFT circuits.

In the following sections, the proposed approach is pre-
sented for enabling TFT implementations of the computations
required for strong classification. Two ideas are exploited. The
first idea is boosting. This addresses the problem of inade-
quate fitting of weak classifiers to the data distributions, by
employing an ensemble of weak-classifier decisions to form a
strong classifier. Specifically, we employ the boosting algorithm
known as adaptive boosting (AdaBoost) [9]. The second idea is
error-adaptive classifier boosting (EACB) [10]. This addresses
the problem of high variability and nonideality in the weak-
classifier implementations, by training the weak classifiers in a
manner that is aware and responsive to the decision errors that
these cause.

B. Adaptive Boosting

AdaBoost uses a fundamentally weak-classifier building
block, such as a simple linear classifier, which cannot fit to arbi-
trary training data. The architecture of the algorithm is shown
in Fig. 6. AdaBoost trains the weak classifiers iteratively, by
emphasizing the training data instances that are incorrectly fit
by previous weak classifiers. As a result, subsequent weak clas-
sifiers adaptively improve overall fitting to the training set.
The final classification decision is then made by performing
weighted voting over the individual classifier outputs (weighted
voting is simply implemented using a signed adder). The overall
result is a strong classifier, yet constructed from a set of weak
classifiers, which may be substantially simpler to implement.

An important attribute of AdaBoost noted by theoretical
work is that fitting to arbitrary distributions can be achieved
even with extremely weak classifiers, namely, which perform
only marginally better then 50/50 guessing [9]. This opens
the option to use weak classifiers that have a topology viably
implemented using simple TFTs circuits.
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Fig. 7. Error-adaptive classifier boosting allows for the addressing of errors in
preceding weak-classifier iterations that arise due to circuit nonidealities.

However, TFT implementation of even simple weak-
classifier circuits faces practical challenges. In addition to the
fitting errors incurred with weak classifiers, implementation
using TFTs will suffer from large static variations and high
circuit fault rates. To overcome this, we employ EACB.

C. Error-Adaptive Classifier Boosting

Previous work has resulted in an algorithm known as
EACB, whereby weak-classifier implementations that substan-
tially deviate from their nominal behavior can be employed
within the framework of AdaBoost [10]. EACB exploits the
fact that, in AdaBoost, weak classifiers are trained iteratively.
This means that knowledge of the errors due to circuit non-
idealities in a particular instance of weak-classifier hardware
can be used to adaptively train subsequent iterations of weak
classifiers. By exploiting data-driven training, complex and
severe errors manifesting from the nonideal implementation of
previous weak-classifier iterations can thus be effectively over-
come. This is shown schematically in Fig. 7, where the nominal
linear decision boundaries of the weak classifiers are per-
turbed due to circuit nonidealities. Subsequent weak-classifier
models are adapted to address the resulting misclassified
points.

Previous work on EACB has resulted in two key out-
comes [10]. First, it has shown that the performance achieved
through this approach corresponds to the fundamental level
of information that is preserved in the presence of the non-
idealities; namely, the performance achieved corresponds to
the mutual information between the error-affected data and
the true class membership, regardless of the magnitude or
rate of the errors. Second, it has shown that EACB training
can be achieved efficiently using low-complexity embedded
hardware (i.e., microcontroller with low MIPS and modest
embedded memory [10]). Further, utilizing the error-affected
data from the system itself in order to perform training, var-
ious methods can also be employed for estimating training
labels, thereby achieving training entirely within the system
itself.

We show in this work that EACB applied to AdaBoost
enables the implementation of a high-performance classifier
(achieving performance near the level of an ideal SVM) using

Fig. 8. Components required for the trainer and classifier.

simple, variation-prone TFT circuits for the weak classifiers.
This leaves only the weighted voter requiring error-free compu-
tation, as previous work has shown that final classification per-
formance is sensitive to voter errors [10]. Section III describes
the implementation and analysis for an image-detection system,
which thus employs TFT-based weak classifiers to substantially
reduce the number of interfaces from the LAE domain, with the
weighted voter (signed adder) presumed to be implemented in
the CMOS domain.

III. THIN-FILM CLASSIFIER IMPLEMENTATION

Having outlined the algorithmic approach used to create
a strong classifier from simple, variation-prone TFT circuits,
this section describes the implementation. Fig. 8 illustrates the
following components required in a complete system:

1) a sensor array (image-sensing pixels);
2) a serial interface for acquiring training data;
3) a trainer for constructing the classification model from

training data;
4) a serial interface for loading the models from training into

the weak classifiers;
5) the weak classifiers themselves for applying the models

in order to derive image-detection decisions on the sensor
data in real time;

6) a weighted voter for deriving the final image-detection
decision.

Among the components, the sensor array [labeled (1)] and the
classifier [labeled (5)] operate continuously, and are thus par-
ticularly critical. The trainer [labeled (3)] operates infrequently
(one time in our demonstration) and is presumed to be imple-
mented on a CMOS IC, using an algorithm similar to that
previously demonstrated [10]. Both the training-set acquisi-
tion interface and the model-loading interface [labeled (2) and
(4)] require thin-film scanning circuits to control switches for
multiplexing data onto a serial interface. The scanning cir-
cuits can be simple digital circuits and can operate at low
speed, since training occurs infrequently. Similar circuits are
routinely incorporated for row-scanning in active-matrix sys-
tems. As an example, scanning circuits previously presented
can be used for this purpose [11]. For the current system
demonstration, these circuits are not included. Finally, hav-
ing reduced the interfaces from the sensor-array signals to a
small number of weak-classifier decisions, the weighted voter
[labeled (6)] is presumed to be implemented on a CMOS IC,



RIEUTORT-LOUIS et al.: LARGE-AREA IMAGE SENSING AND DETECTION SYSTEM 285

using a signed adder (since its errors impact overall perfor-
mance [10]). Thus, the focus of the system demonstration is the
sensor array and ensemble of weak classifiers, which operate
continuously.

A. Weak-Classifier Implementation

The weak classifiers are implemented using TFT circuits. In
particular, each weak classifier implements an approximation
to a linear classifier, represented by the function previously
shown in (1). The dot-product operation required is imple-
mented using a TFT circuit, which also is capable of storing
the weights �c obtained from model training. The weak classi-
fiers thus reduce M sensor signals to N dot-product outputs. The
reduced signals are then presumed to feed a CMOS IC, which
implements thresholding and weighted voting. Next, we will
look closer at the implementation of the model-programmable
weak classifiers.

1) Weak “Linear” Classifier: The dot product within
the linear classifiers is implemented as shown in Fig. 9.
Approximation to multiplication between each sensor and each
weight from model training is achieved through a series com-
bination of TFTs. The TFTs are biased with M1 in saturation
(having transconductance gm1) and M2 in the linear region
(giving effective resistance RB2). For M2, we thus have

1

RB2
≈ dI1

dVds,M2
= k

W

L
[(VB1 − VT )− Vds,M2] (2)

and for M1 we have

I1 = k
W

2L
(VS1−I1RB2 − VT )

2 =
gm1

2
(VS1 − I1RB2 − VT ).

(3)
Rearranging this results in

I1 =
gm1(VS1 − VT )

2 + gm1RB2
. (4)

If gm1RB2 � 2 is sufficiently satisfied, and M2 is in deep tri-
ode such that (VB1 − VT ) � Vds,M2 is sufficiently satisfied,
the output current of the series connected TFTs implements an
approximation to multiplication

I1 ≈ (VS1 − VT )

RB2
≈ k

W

L
(VB1 − VT )(VS1 − VT ). (5)

Following this, the summation required within the dot-product
operation is then realized by combining the output currents
from these branches through the resistor R.

However, in practice, this circuit only approximates multi-
plication. This is because of nonlinearity (arising due to the use
of the gm1 term), approximations (arising as described above),
and variations (arising in all the TFTs). From measurements
taken at representative bias voltages, the actual transfer func-
tions achieved for each input (gate of M1 and gate of M2) to
the output current are illustrated in Fig. 10. We see that the
transfer function from M1, over the designated voltage range
(output of the sensor), is fairly linear, and thus implements a
good approximation to multiplication. On the other hand, the

Fig. 9. TFT implementation of the linear-classifier dot-product approximation.

Fig. 10. Measured nonideal deviation and variation in the dot-product approx-
imation circuit (over 10 circuits).

TABLE I
MEASURED VARIATION IN TFT DEVICE PARAMETERS

(OVER 100 DEVICES)

transfer function from M2 is substantially nonlinear, and thus
implements a somewhat worse approximation to multiplication
(the ideal multiplication transfer function is overlayed in dot-
ted curves). This motivates feeding the sensor signal to M1
and applying the model weight to M2. The reason for this is
that the model weight does not change continuously; rather,
once derived from training, the proper biasing level (VB) can
be determined computationally, by applying the inverse of the
nominal transfer function from M2, thus mitigating the impact
of its nonlinearity. Such a transfer function can be obtained
either from device measurements or from circuit simulations
(the former is used for the results presented). In either case, the
transfer function should represent the behavior after averaging
out the effects of random variations, since random variations are
overcome by the EACB approach. On the other hand, the sen-
sor signal changes continuously, and is thus preferable to apply
directly to the circuit (i.e., without any transform to mitigate
the impact of nonlinearity, which would necessitate additional
circuitry).

In addition to nonideal deviations in the nominal trans-
fer functions, the TFT circuits also suffer from substantial
variation. Shown as error bars in Fig. 10, the resulting varia-
tions in the transfer functions (measured from 10 circuits) are
severe. Specifically, the device-level variations are measured
as reported in Table I. To overcome this, the EACB algo-
rithm is leveraged, and analysis from simulation is presented
below.
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Fig. 11. TFT I–V curves showing threshold-voltage shift for model-
programming in TFT classifier.

Fig. 12. Complete pseudodifferential multiplication circuit for the application
of positive and negative model weights.

Fig. 13. Complete thin-film sensing and classification system.

2) Classifier Model Programmability: As mentioned, in the
multiplication circuit, the gate of M2 is used to apply the
trainer-derived model weight. This implies that the circuit must
support storage of a programmable analog voltage at the gate
of M2. To achieve this, nonvolatile charge trapping in the gate

Fig. 14. Simulated classification rates with and without the implementation of
EACB (shown for one vs. all classification of four shapes).

Fig. 15. Thin-film prototype.

dielectric of a TFT is used [12], [13]. Application of a large
electric field on the TFT gate effectively results in a large,
controllable threshold-voltage shift. This is shown in Fig. 11
which plots the measured drain current versus gate voltage for
a standard TFT, and for a TFT programmed to have a threshold-
voltage shift of 30 V (with error bars showing results over six
devices). For large model weights, a small positive threshold-
voltage shift is applied, while for small model weights, a large
positive threshold-voltage shift is applied. Though training typ-
ically only occurs once in the system, this form of programming
is reversible through the application of a large negative voltage
on the TFT gate.

One complication that arises in practice is that the model
weights derived from training can be negative. To address this,
pseudodifferential multiplication branches are used to create
the complete multiplication circuit, as shown in Fig. 12. For
example, to apply a negative weight, the left branch is pro-
grammed with a large threshold voltage, essentially turning it
OFF, while the right branch is programmed with a low threshold
voltage, appropriately set.

3) Overall Implementation: Fig. 13 shows the overall
implementation with the weak classifiers comprising the
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Fig. 16. Thin-film photoconductors.

Fig. 17. Variability in thin-film photoconductors.

Fig. 18. Amorphous silicon TFT.

summed outputs from the pseudodifferential multiplication
units. Thirty-six sensor signals, corresponding to the outputs
from photoconductor pixels for image sensing, feed the ensem-
ble of weak classifiers, all appropriately VT -shifted based on
the model weights derived from training. The outputs, thus cor-
responding to the dot-product results, are subsequently thresh-
olded to derive the weak-classifier decisions. The ultimate goal
of this implementation is to reduce the large number of sensor

Fig. 19. Effect of programming time on threshold-voltage shift of amorphous
silicon TFT.

Fig. 20. Subset of dataset used for classification.

signals to just a small number interfaces for the weak-classifier
decisions. Although here inputs from all 36 sensors are fed to
the weak classifiers, the implementation of an offline feature
selection algorithm could also be considered. Such algorithms,
which select the sensors providing the greatest information for
a given classification application, can substantially reduce the
number of inputs [14].

To analyze the system, simulations are performed by creat-
ing statistical models of the TFT-based weak classifiers. First,
we extract a Level 61 SPICE model of the TFTs from device
measurements. Transistor-level simulations are then performed
in Spectre to characterize the transfer functions of the mul-
tiplication unit, which is used in the weak classifiers. The
transfer functions are represented numerically and augmented
with measured device-level variation data to create a statistical
model of the units usable in MATLAB. Monte Carlo simu-
lations are then performed in MATLAB of the entire system,
consisting of multiple weak classifiers composed of variation-
affected multiplier units. Using the shape dataset, the weak
classifiers are trained, employing both the AdaBoost and EACB
algorithms. Fig. 14 shows the simulation results for classi-
fiers trained to four shapes. The metrics used for characterizing
classification performance are true-positive (tp) rate and true-
negative (tn) rate. As an example, considering the classification
of rings versus all the other shapes in the dataset, true positive
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Fig. 21. Measured classification results.

rate (6) and true negative rate (7) are shown at the bottom of
the page. As can be seen in Fig. 14, while AdaBoost alone is
inadequate, EACB enables high classification performance to
be achieved.

IV. SYSTEM DEMONSTRATION

In this section, the thin-film system prototype is presented.
As shown in Fig. 15, it consists of two glass substrates onto
which both thin-film a-Si sensors and transistors are fabricated
in-house using a maximum processing temperature of 180◦C.

The first sample is an 8× 8 cm array of 36 image sensors
onto which images are projected using a microprojector. The
outputs from the sensors are passed to the second sample, con-
sisting of the TFT-based weak classifiers. To aid testability,
interfacing between the two samples is achieved using a probe
card, which permits the acquisition of both weak-classifier and
sensor outputs, for processing and analysis by a PC.

A. Image Sensors

The image-sensing array is constructed using sensor pixels
based on thin-film photoconductors. The photoconductors are
pictured in Fig. 16. These are formed by interdigitated undoped
a-Si with a thickness of 150 nm. As shown, these exhibit
strong change in I–V response under different illumination
conditions.

To implement the complete sensor pixel, this photoconductor
is configured as one leg of a voltage divider, where the other leg

True positive rate =
number of correctly classified ring instances in the dataset datapoints

total number of ring instances in the dataset
(6)

True negative rate =
number of correctly classified other shapes

total number of instances of other shapes in the dataset
(7)

is a fixed thin-film resistor (750 kΩ). The output voltage from
36 sensors over time is shown in Fig. 17 under two illumination
conditions. Although a strong photoresponse can be observed,
a substantial amount of variation across the sensors can also
be seen. The use of a data-driven machine-learning algorithm
allows for modeling of the acquired data even in the presence
of such large variations across the sensors.

B. Thin-Film Transistors

The TFTs used in the weak classifiers are fabricated using
our standard a-Si process technology [15]. The TFT layers are
pictured in Fig. 18 alongside a typical TFT transfer curve.

As described previously, programmability of the weak classi-
fier is achieved via gate-dielectric charge trapping in TFTs with
the same structure, simply by applying a large programming
voltage on the gate. Typical programming (erase) voltages are
+80 V (−80 V), with a drain and source voltage of 0 V in both
cases. A typical threshold-voltage shift versus programming
time characteristic is shown in Fig. 19 (as described earlier,
this threshold-voltage shift can be mapped appropriately to a
model weight obtained from training by applying the inverse
transfer function of the multiplication circuit). It is also worth
noting that the variation in programmed and erase states is small
(σ(VT ) ≤ 1V ), so the desired shifts can be achieved repeatably.
This level of variation in VT is easily tolerated as a result of
using the EACB algorithm.

A potential future focus for the implementation is the pro-
gramming voltages and programming times required, both of
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Fig. 22. Effect of error-adaptive classifier boosting (EACB).

which are somewhat large. Substantial room exists to optimize
these. For instance, previous work has demonstrated that these
can be reduced by using a slightly modified TFT structure, con-
sisting of the addition of an explicit a-Si floating gate [16]. This
previous work also highlights that retention time and biasing
stresses are strongly affected by the chosen memory structure.
For the programmable elements described in this work, a charge
retention of 80% of programmed state is typical after 1 h; how-
ever, structures achieving retention of 80% over a duration of
greater than 3 months have been realized (e.g., [16]).

C. Image Classification System

Some of the images from the dataset used for testing the thin-
film shape classifier are shown in Fig. 20. In total, 150 data
instances are used, comprising 5 shapes with 10 background
intensities, under three illumination conditions.

Fig. 21 shows plots of tp and tn rates for one-versus-all clas-
sification of each shape with respect to the number of weak
classifiers used. As can be seen for all shapes, boosted perfor-
mance is observed, as TFT weak-classifier iterations are added.
Indeed, high overall classification performance is achieved with
very few weak classifiers in all cases.

For reference, horizontal lines show the performance
achieved when performing classification using an ideal
MATLAB-implemented SVM classifier, a widely used strong
classifier. Between just two and five weak classifiers (itera-
tions) are required to achieve performance at the level near that
of the SVM, implying a substantial reduction in the number of
interfaces, compared to the 36 raw sensor inputs.

Fig. 22 highlights the importance of using the EACB algo-
rithm as opposed to simply using the AdaBoost algorithm,
illustrated for the case of classification of ring versus other
shapes. Without EACB, even with seven weak-classifier iter-
ations, convergence is not achieved and low classification
performance is observed, whereas EACB leads to substantially
boosted performance.

V. CONCLUSION

This paper presents the implementation of a thin-film sens-
ing and classification system based on LAE. While LAE
enables the formation of diverse and expansive arrays of sen-
sors, the resulting TFTs have low performance and high vari-
ability, precluding the implementation of complex functions

for processing sensor signals. The presented system uses a
machine-learning algorithm, known as EACB, which enables
the creation of a strong classifier using an ensemble of sim-
ple classifier circuits having low electrical performance and
high variability. Implemented using TFTs, the weak-classifier
circuits reduce the sensor outputs to a small number of sig-
nals, which can be provided to a CMOS IC to make the final
classification decisions.

High classification performance is demonstrated for a shape
classification system, at the level of a strong complex classi-
fier (SVM), even in the presence of substantial sensor and TFT
variability. Trained to detect five different shapes, a reduction in
signals of 3.5–9× is achieved with respect to the 36 raw sensor
outputs. Though this represents a small-scale proof of concept,
the approach of reducing data to weak-classifier decisions is
promising as the size of sensing array scales. This is because
algorithms such as AdaBoost (employed within EACB) per-
form powerful optimizations during weak-classifier training.
In addition, architectural techniques, such as an active matrix,
used in conjunctions with such algorithms, can enable substan-
tial reduction in the total number of interfaces, and present a
compelling direction for future work.
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