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Abstract—This paper presents a sensing and compression sys-
tem for image detection, based on large-area electronics (LAE).
LAE allows us to create expansive, yet highly-dense arrays of
sensors, enabling integration of millions of pixels. However, the
thin-film transistors (TFTs) available in LAE have low perfor-
mance and high variability, requiring the sensor data to be fed to
CMOS ICs for processing. This results in a large number of inter-
connections, which raises system cost, and limits system scalability
and robustness. To overcome this, the presented system employs
random projection, a method from statistical signal processing,
to compress the pixel data from a large array of image sensors
in the LAE domain using TFTs. Random projection preserves
the information required for subsequent classification, and, as we
show, is highly tolerant to device-level variabilities and amenable
to parallelized implementation. The system integrates an
amorphous-silicon (a-Si) TFT compression circuit with an array
of a-Si photoconductors, representing an 80 × 80 active matrix,
performing up to 80× compression of the 80 signal interfaces. For
demonstration, image classification of handwritten digits from the
MNIST database is performed, achieving average error rates of
2–25% for 8–80× compression (e.g., 7% at 20× compression).

Index Terms—Amorphous silicon, compression, image classifi-
cation, thin film sensors, thin film transistors, variability.

I. INTRODUCTION

LARGE-AREA electronics (LAE) is based on processing
semiconductor thin-films at low temperatures, making it

compatible with a wide range of materials. This enables diverse
types of sensors [1]–[8], formed on a variety of substrates, such
as glass or plastic. These substrates can be physically large
(on the order of square meters) and conformal, enabling the
deployment of a large number of spatially-distributed sensors.
Thus, LAE is a compelling technology for embedded sensing
on a large scale.

However, processing and analysis over the large amount of
sensor data requires complex functions, which are not eas-
ily implemented in LAE. This is because the characteristic
low-temperature processing of LAE results in active thin-film
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devices, such as thin-film transistors (TFTs), that suffer from
low performance and high variability. Instead, CMOS ICs are
much better suited to perform such tasks, offering transistors
exhibiting orders-of-magnitude better performance and greater
reliability. This motivates the need for hybrid LAE-CMOS
systems [9], which leverage the benefits of both technologies.
However, research in hybrid systems design [8], [10], [11]
shows that the key challenge that emerges in adopting such
an architecture, is the need for a large number of interfaces
between LAE and CMOS. This limits scalability in the number
of sensors and thus severely restricts the potential of hybrid
systems.

One method used to address this interfacing challenge is the
active-matrix design, as employed in flat panel X-ray imagers
[12]. This results in an approximately square-root reduction in
the number of interfaces. However, as an example, taking X-ray
imagers of today, which are approaching tens of megapixels,
we still require thousands of interfaces. This poses a domi-
nating limitation in systems, impeding further scaling of such
systems in the future. In this paper, we present an approach
that substantially reduces the number of interfaces beyond the
level achieved with an active matrix, by performing image
compression via an approach called random projection. As we
show, random projection is highly tolerant to variations and can
achieve fast operation despite low-speed devices, thus making
it highly suitable for TFT implementation.

The major contributions of this work are as follows:

1) We present the concept, as well as circuit and architec-
ture designs, of a system that performs compression via
random projection in the LAE domain using low-speed,
variation-prone TFTs, for subsequent classification.

2) We develop a prototype and demonstrate the system ex-
perimentally, to evaluate the feasibility and performance
of the system.

3) We analyze the impact of various non-idealities in the
TFT implementation (i.e., device variations, nonlineari-
ties) on system performance. Evaluating the potential of
the random-projection approach will enable future device-
level optimizations and relaxations.

The remainder of this paper is organized as follows. In
Section II, we provide an overview of the system and the
key principles involved, specifically random projections and
their property of preserving the inner product between vectors.
In Section III, we describe the thin-film implementation of
the system, including the TFT circuits which make up the
compression block. In Section IV, we examine the effects of
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Fig. 1. Proposed architecture of image sensing and compression system. A
reduction in interfaces from an active-matrix array of sensors is achieved using
a TFT-based compression matrix Φ (i.e., NC to M ).

TFT non-idealities in the compression block, by modeling TFT
nonlinearity and variation to analyze precisely how these result
in deviations from an ideal compression matrix. In Section V,
we demonstrate the performance of the image-compression
system through classification and reconstruction on images
from the MNIST database of handwritten digits [13]. Finally,
in Section VI, we provide conclusions.

II. OVERVIEW OF THE APPROACH

Fig. 1 shows the block diagram of the proposed system. In
an NR ×NC active-matrix array of sensors, scanning row-by-
row reduces the sensor interfaces from NR ×NC to ∼NC (plus
a few row-scanning control signals). The NC-interface signal,
designated as the vector �xi, is then fed into a compression
block. Compression is achieved by performing multiplication
of �xi with an M ×NC matrix Φ, where M < NC . Thus, the
NC -interface signal is now reduced to an M -interface signal
�yi, resulting in a compression factor of NC/M . Transmitted
to the CMOS domain, the compressed �yi, can then be used
to reconstruct the image; though, in this work our primary
interest is in applications requiring classification of the sensed
image, directly from the M -interface output signal �yi without
reconstruction.

Previously, we presented a system [8] that directly applies
TFT-implemented machine-learning classifiers to the sensor
data. However, that embedded-classifier approach requires ad-
ditional, specialized circuitry to program and store analog volt-
ages in the TFT classifiers. In contrast, the system demonstrated
in this paper, which performs feature extraction, rather than
classification, in the LAE domain, needs only very simple,
variation-tolerant TFT circuits with no programming. Further-
more, when applied in conjunction with an active matrix,
this random-projection-based compression approach achieves
greater reduction in the number of interfaces.

A. Random Projections

Many image compression algorithms utilize a transform do-
main, where the image information is known to be sparse (i.e.,
has a small number of non-zero transform coefficients). For

example in JPEG, the two-dimensional (2-D) discrete-cosine
transform (DCT) is used [14]. However, domain transforma-
tions, such as DCT, are generally too complex to compute
using TFT circuits. Instead, the proposed system performs
compression using TFT-based random projection.

Using the approach of random projections, the compressed
output �yi (of length M ) is generated by taking M linear mea-
surements of the input signal (of length NC ). That is, �yi is
derived from linear combinations corresponding to multipli-
cation of the signal �xi with an M ×NC matrix, Φ, such that
�yi = Φ× �xi. While in general the original signal vector �xi

cannot be reconstructed, theoretical work shows that for certain
Φ, the inner product between two compressed output vectors
�yj , �yk statistically preserves the inner product between the two
corresponding original vectors �xj , �xk. For instance, a relevant
mathematical result that provides bounds on the inner-product
error for a specified set of vectors is the Johnson-Lindenstrauss
Lemma [15]. However, more generally, as we describe in the
next subsection, a matrix Φ can be chosen that yields some level
of statistical inner-product preservation for all vectors.

Inner-product preservation is an important result because
inner products are used as the similarity metric in a range
of classification algorithms, such as support-vector machines
(SVMs) [16]. Therefore, by using an appropriately chosen Φ,
image detection can be performed directly on the compressed
outputs �yi without the need for prior reconstruction of the
original signals �xi [17]. The aim of our approach is to employ
a Φ that is easily implemented using the low-performance
and high-variability TFTs available in LAE. In this way the
interfaces within a hybrid system to the CMOS domain can
be significantly reduced, while retaining the ability to perform
accurate classification over LAE sensor data.

B. Inner-Product Preservation via Random Φ

Random matrices, whose elements are draw from a zero-
mean random variable exhibit inner-product preservation. An
example of such a matrix Φ, which we use in this work, is one
whose elements are drawn from a zero-mean Bernoulli random
variable (i.e., one whose elements are ±1 with probability 1/2)
[17]. This particular Φ is selected, because with only ±1
entries, compression is now reduced to simple add/subtract
operations over the signal samples, and the random structure
implies tolerance to device-level variations. These two results
make implementation of compression via TFT circuits possible.

As illustrated in Fig. 2, one general reason that preservation
of the inner products arises is because, for sufficiently large
values of M (Φ is M ×NC ), ΦTΦ approaches a scaled version
of the identity matrix, MINC. That is, since Φ has elements
which are randomly chosen to be ±1, when ΦTΦ is scaled
(i.e., divided by M ), diagonal entries are exactly 1, while
off-diagonal entries have zero mean and normalized variance
scaling with 1/M . In particular, this scaling is illustrated in
Fig. 3(a) for various chosen matrices Φ. We see that larger M
improves convergence with the identity matrix for any chosen
Φ, thanks to smaller variance of the off-diagonal entries.

Since the off-diagonal entries of ΦTΦ are not precisely
zero, causing deviation from a scaled identity matrix, MINC,
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Fig. 2. Mathematical derivation of inner-product preservation after compres-
sion via matrix Φ.

Fig. 3. (a) Normalized variance of the off-diagonal elements of (1/M) ×
ΦTΦ, versus 1/M . (b) Inner-product SNR of 20 images from the MNIST
database of handwritten digits versus M , compressed using an ideal Φ. Both
figures show data averaged over 10 different ideal Φ, with NC = 1000.

we naturally expect the inner products, which we rely on for
classification, to also exhibit error with a similar dependence.
Since M sets the compression factor, in order to observe its
effect on inner-product preservation, we compare the inner
products of 1000 × 1000 (1 Mpixel) images (resized) from the
MNIST database of handwritten numerical digits, before and
after compression using an ideal M ×NC Φ, for various M .
To quantify the quality of inner product preservation, we cal-
culate the inner-product signal-to-noise ratio (SNR), a measure
inversely related to the inner-product error:

Inner-product SNR =

∑
j �=k

(
M(�xjT�xk)

)2

∑
j �=k

(
�yjT�yk −M(�xjT�xk)

)2 (1)

where j, k refer to different rows of the images, as accessed
out by an active matrix. Averaging over 10 different ideal Φ
for each compression factor, we indeed observe that the inner-
product SNR exhibits the expected linear trend with M , as
shown in Fig. 3(b).

C. Implications of a TFT-Based Implementation

In our system, the required matrix multiplication correspond-
ing to random projection is implemented using TFT circuits.
As previously mentioned, this raises the concerns of large
variations and low speed. With regards to large TFT variations,
these effectively cause deviations from nominal multiplication
by ±1. However, as illustrated in Fig. 2, what is critical is not
that the matrix elements are precisely ±1, but rather that the
off-diagonal elements of ΦTΦ approach zero. This criterion
may be met even in the presence of TFT variations, provided
that the variations are uncorrelated. Accordingly, even with
large TFT variations, we demonstrate (in Section V) that the
prototype system maintains image classification performance
out to high compression factors. With regards to low TFT speed,
as will be described in the next section, multiplication by a
matrix whose elements are nominally ±1 can be implemented
in a highly parallel manner, where the additions involved are
trivially achieved by TFT current summation on shared nodes.
Further, the time constants of the shared nodes can be made
much lower than those set by the TFT capacitances.

D. Sparse Image Reconstruction

In the presented system, our interest is in the classification
of images. However, we point out that the approach of com-
pression using random projections also has a relationship to the
reconstruction of �xi. The theory of compressive sensing states
that if there exists a transform basis, assigned as Ψ, in which a
signal is sparse (i.e., the information of the signal is captured by
k non-zero transform coefficients, where k � NC), the trans-
form coefficients can be determined from a small collection of
measurements derived from linear combinations of the signal
samples [18]. The only requirement is that ΦΨ satisfies the
Restricted Isometry Property (RIP) [19]. For typical transforms
used for image compression (e.g., DCT), the requirements of
RIP are met with high probability when the elements of Φ are
drawn from a zero-mean Bernoulli random variable (i.e., ±1
with probability 1/2) [20].

So indeed our choice of Φ also broadly permits reconstruc-
tion of images from the compressed vector �yi. However, unlike
classification, which does not require explicit knowledge of
Φ, generally, reconstruction of the original signal does. This
poses a limitation because though we have knowledge of the
nominal Φ implemented by the system, TFT nonlinearities and
variations make the effective Φ difficult to know precisely.
Thus, reconstruction performance is limited by these non-
idealities. Nonetheless, in Section V we demonstrate that image
reconstruction from compressed data is possible.

III. THIN-FILM IMPLEMENTATION

Having provided background on the algorithmic approach
of the image compression system, we now describe the
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Fig. 4. Implementation of the system, which emulates an NR ×NC active
matrix with an array of NC sensors. Image data is projected row-by-row onto
the NC -array of sensors and the corresponding sensor outputs are fed into the
M ×NC compression block Φ. The resulting compressed output data from all
rows are then concatenated in the CMOS domain.

thin-film implementation. The components required in the com-
plete system are as follows: 1) the sensor array, meant to be
accessed using an active matrix, and whose data are fed into
2) the TFT-based compression block.

Our aim is to represent an active matrix consisting of a large
number of sensors (i.e., large NR, NC). However, as illustrated
in Fig. 4, instead of fabricating NR ×NC image sensors and
their corresponding access TFTs, we fabricated only NC image
sensors. Images to be detected are projected one row at a time
onto the fabricated sensors, where a uniform square of light is
projected onto each sensor, corresponding to a single pixel in
the row. Accordingly, pixel data from the NC sensors are made
available one row at a time, as they would be in a typical row-
scanning active matrix.

Since sensor data is fed to the compression block row-by-
row, compression is also performed one row at a time. Even-
tually, the compressed output data from all rows of the image
are concatenated (Fig. 4). Classification (and reconstruction) is
then performed as it would be on a standard CMOS IC.

A. Image Sensors

The image sensors (i.e., pixels) are implemented as shown
in Fig. 5, which is similar to [8]. Each pixel corresponds to a
voltage divider formed by a fixed 1 MΩ resistor and an island of
undoped amorphous-silicon (a-Si) in an inter-digitated layout,
serving as a photoconductor. Since such a photoconductor
exhibits a suitable response to variations in lighting condition
(i.e., light versus dark), the image data is presented to the sensor
array via a micro-projector.

As shown in Fig. 6, the level of illumination is thus sensed
by the pixel as an output voltage. The measured pixel response
when varying the grayscale level of the image data inputted to
the micro-projector (i.e., projecting different levels of illumina-
tion) exhibits a relatively linear relationship (we expect residual
nonlinearity to be addressed through training of the classifier
model within the system [8]). The error bars correspond to
the standard deviation across 28 different characterized pho-
toconductors (easily accessed via the sample layout). With a
60 V supply voltage, the resulting sensor output voltage range,

Fig. 5. An image of an a-Si photoconductor and its schematic cross section,
similar to that in [8].

Fig. 6. Photoconductor sensor output voltage versus illumination. The error
bars show standard deviation across 28 sensors. The inset shows the sensor
voltage divider configuration with the supply voltage and fixed resistor values
labeled.

allows us to drive the subsequent TFTs in the compression
block (described below) in the above-threshold regime.

B. TFT-Based Compression Block

Fig. 7 shows the TFT-based implementation of the M ×NC

compression matrix Φ, which reduces the NC pixel-sensor
signals to M output signals. Each of the NC sensor outputs
(xi

1 . . . x
i
NC), corresponding to data from one row of the pro-

jected image, feeds the gates of M TFTs, which correspond to
the M rows of Φ.

As previously mentioned, since the elements of Φ are ran-
domly chosen to be ±1, compression simply involves addition/
subtraction operations, as determined by the elements of Φ. To
implement this, first a TFT is used to convert the pixel-sensor
voltage into a current, determined by the transconductance of
the TFT. Next, to perform addition or subtraction, the TFTs
of each row (driven by xi

1 . . . x
i
NC) are connected together at

either a positive or negative current-summing node, depending
on whether a matrix entry of +1 or −1 is to be implemented.
That is, by construction, the TFTs that represent +1 elements of
the ideal Φ are connected to positive current-summing nodes,
while the TFTs that represent −1 elements of the ideal Φ,
are connected to negative current-summing nodes. This results
in differential signals corresponding to the compressed output
yi1 . . . y

i
M. As previously mentioned, the sensors are biased

such that their output voltages (xi
1 . . . x

i
NC) that feed into the
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Fig. 7. TFT-based implementation of the M ×NC compression block Φ. The
(+1)’s and (−1)’s correspond to the elements of the ideal Φ.

compression block, operate the TFTs in the above-threshold
region. A fixed drain-source voltage of 10 V is maintained
across the TFTs, by connecting each summing node to the
virtual ground of a transimpedance amplifier (TIA), which can
be implemented in the CMOS IC. We note that a 10 V bias is
not actually required from the CMOS chip, since its ground can
be suitably offset with respect to the TFT circuits.

Such an architecture for implementing compression is able to
achieve fast operation despite the low speed of TFTs, and is able
to do so with a small number of TFTs (M ×NC) compared
to the total number of TFTs in an active matrix (minimally
NR ×NC). First, the small number of additional TFTs ensures
that the compression block imposes minimal loading on the
active-matrix data lines, thereby having small impact on their
settling time. Second, despite a small number of additional
TFTs, highly parallel operation is achieved, with all outputs
of the compression block derived at once. Third, the dominant
time constant in the compression block is set by TFTs driving
current on the shared summing nodes, where the impedance
is substantially reduced thanks to a virtual ground condition
imposed by the TIA. Namely, implemented as an op-amp with
feedback resistor Rfb (Fig. 7), the TIA has an input impedance
Zin ≈ Rfb/(1 +A), where A is the open-loop gain of the
op-amp. Thus, despite a large total capacitance on this node set
by the TFTs (Ctot ≈ Cgd ×NC), even modest op-amp gain
results in a low input impedance and a small time constant
τcomp=Zin×Ctot. As an example, using our compression-
block design with an X-ray imager having 2304 data lines and
3200 gate lines, performing row scanning at 1 kHz [12], yields a
Ctot of approximately 2800 pF (≈ 2304TFTs × 1.25 pF/TFT).
Our NC = 80 implementation employs a TIA with Rfb =
50 kΩ (though an even smaller resistor would be used with
NC = 2304), giving Zin < 50 Ω, assuming an op-amp gain of
just 1000. The resulting time constant τcomp ≈ 1.4× 10−7 sec,
which is much faster than the 1 kHz row-scanning rate.

In this system, the compression block is implemented using
a-Si TFTs that are fabricated in-house with our standard low-
temperature (< 180 ◦C) process [21]. The schematic cross
section of the a-Si TFT layers is pictured in Fig. 8. Fig. 9 shows

Fig. 8. The schematic cross section of the a-Si TFTs that are used to implement
the compression block.

Fig. 9. The IDS vs. VGS curve for the fabricated a-Si TFTs, with error bars
showing the standard deviation across 80 devices.

the measured IDS vs. VGS transfer curve for the fabricated
a-Si TFTs, with error bars showing the standard deviation
across 80 devices. With an average sensor output-voltage range
of 11–20 V (Fig. 6), the TFT current levels are roughly
50–100 μA. This is suitable for our 80-column system, but TFT
sizing and biasing (i.e., sensor output-voltage range) can be
designed for active matrices of larger sizes. In addition to the
non-linearity of TFT transfer curves, the substantial variation
observed across the TFTs implies that the sensor signals fed
to the TFT gates are not multiplied by exactly ±1 (or, more
accurately, a constant transconductance across the TFTs), as
assumed for an ideal Φ. We analyze the effects of a non-ideal
TFT-implemented Φ in the following section. We point out that
while our interest in this work is in exploring the ability of the
compression approach to overcome such non-idealities, circuit-
level solutions may additionally be employed in the system
(e.g., TFT source degeneration for enhancing linearity).

IV. ANALYSIS OF TFT NON-IDEALITIES

In this section, we examine the consequences of using a
TFT-based Φ for implementing compression via random pro-
jection. We do this by performing simulations in MATLAB.
In particular, we are interested in the effects on inner-product
preservation of variations and nonlinearity in the TFT transfer
curves (i.e., IDS − VGS relationship, with constant VDS). We
analyze this by both modeling and measuring the actual TFT
transfer curves (this is done for characterization and analy-
sis only, not for actual operation in the system). With inner
products serving as a similarity metric for classification, it
is clear that inner-product preservation has correspondence
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Fig. 10. Comparison of linear regions for above-threshold operation of TFTs
with different VDS.

with classification performance. However, we note that classifi-
cation via data-driven (machine-learning) training algorithms
present significant opportunities to overcome errors in the
inner-product-preserving compressed vectors. For instance, the
approach of Data-Driven Hardware Resilience (DDHR) [22],
exploits training to the error-affected data so that distortions
to the data are learned during the classifier-training process;
this substantially enhances error tolerance further. Thus, both
inner-product preservation and the ultimate classification per-
formance must be analyzed. We also point out that in addition
to stationary variations in device parameters, the TFTs may
possibly be subject to non-stationary variations (i.e., drifts).
Though a high level of stability in the TFT parameters can
be achieved through processing techniques [21], generally, in
a machine-learning system classifier, retraining may also be
employed to track any resulting changes in the data statistics.
Further, specifically within the random-projection approach,
if such variations impact the TFT currents in an uncorrelated
manner (e.g., after simple mean subtraction), we expect them
to be addressed similar to stationary variations.

We start by analyzing inner-product preservation in this
section. As mentioned in Section II, the quality of inner-product
preservation depends on the how well ΦTΦ approximates a
scaled version of the identity matrix, MINC. To quantitatively
measure the distance between these two matrices, we employ
the l1-norm:

Distance From Identity =

∥∥∥∥
1

M
× ΦTΦ− INC

∥∥∥∥
1

. (2)

By introducing variations and nonlinearity in the TFT transfer
curve and performing simulations, we aim to more precisely
analyze the impact on system performance (i.e., image classifi-
cation and reconstruction results). We first analyze the effects
of variations by using a piecewise-linear model of the TFT
transfer curve. As can be seen from Fig. 10, such a model
well-represents the transfer curve of a TFT with a low VDS,
since in this case, the TFT is almost entirely in the linear
region, when operating above threshold. However, low VDS

values do not achieve large enough currents for practical system

Fig. 11. Piecewise-linear model curve compared to a measured IDS vs. VGS

curve averaged across 80 TFTs.

operation. As such, the TFTs are actually operated at a higher
VDS (i.e., VDS = 10 V), which introduces a substantial non-
linear (saturation) region (Fig. 10). Thus, we also model the
effects of such nonlinearity by employing actual measured
TFT transfer curves, representing the true shape. We note
that, strictly speaking, a piecewise-linear model also implies
nonlinearity; however, for the model described below, at least
nominally, the nonlinearity can be negated by simply offsetting
the input pixel voltage (as described below).

A. Piecewise-Linear Model for Analyzing Variations

The typical parameters of interest for TFT variations are
threshold voltage and mobility. Indeed, as seen from measure-
ments of a-Si TFTs in Fig. 9, these parameters exhibit high
variability. Using MATLAB, we generate a statistical model,
to independently simulate variations in threshold voltage and
mobility. In this way, it is possible to observe their individual
effects on ΦTΦ and, in particular, its distance from identity.

In order to model the offset of a TFT transfer curve (i.e., the
sub-threshold versus above-threshold regimes of the TFT), a
piecewise-linear model is employed, as shown in Fig. 11. That
is, for values below a cutoff voltage the output of the piecewise-
linear transfer curve is 0. On the other hand for values above the
cutoff voltage, the piecewise-linear model has non-zero values
that are linearly dependent on the input sensor voltages. The
cutoff voltage is selected to be 0 V, so that in the ideal case, the
curve is essentially linear. Since the pixel voltages are shifted to
fall into the above-threshold region of the TFT transfer curve,
the slope of the linear model is selected to be the same as the
slope of a TFT transfer curve (averaged across 80 measured
TFT devices) in this region (Fig. 9).

To simulate the variations in threshold voltage and mobility,
the cutoff voltage (VT ) and slope (γ) of the piecewise-linear
model are varied, respectively (Fig. 12). The shifts in threshold
voltage and slope are drawn from a normal distribution for
various different standard deviations σVT and σγ.

In order to derive the corresponding compression matrix
Φ, we remember that the magnitude of any given element of
Φ, φa, is defined as the multiplier of the input sensor voltage,
Va, which results in the output current, Ia:

φa ≡ Ia
Va

. (3)
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Fig. 12. Simulation of variations in (a) threshold voltage, VT and (b) slope, γ,
using the piecewise-linear model of the TFT transfer curve. Different effective
φ arise due to these variations.

The shape of the piecewise-linear transfer curve results in a
different effective φa for different input pixel values (i.e., the
effective Φ we have changes with the input voltage level seen).
This is because even though the ideal model is essentially
linear, and thus has a fixed slope, variations in threshold voltage
introduce an offset in the piecewise-linear model (Fig. 12(a)).
The offset means that the ratio between the output current and
its corresponding input voltage, φa, depends on the value of
the input voltage itself, as shown in Fig. 12(a). Therefore, for a
single row of an NR ×NC image, there are M ×NC different
φa, which make up a single Φ of dimension M ×NC . Thus,
for the entire image, there are NR different Φ. Similarly, for
different variations in slope, φa will also vary (Fig. 12(b)).
However, since variations in slope do not introduce an offset
to the piecewise-linear model, φa is the same across an entire
image for a given device with a particular slope. Thus, for an
entire NR ×NC image, there are only M ×NC different φa

corresponding to the different slopes.
This means that the distance of ΦTΦ fromMINC is modified

from (2), to now be an average across all the different ΦjTΦk:

Distance from Identity =
1(
N
2

) ×
∑
j �=k

∥∥∥∥
1

M
× ΦjTΦk − INC

∥∥∥∥
1

(4)

where j, k refer to the effective Φ for different image-pixel
features (i.e., different rows of the active matrix) and N refers
to the total number of effective Φ across all images. There are(
N
2

)
different combinations of ΦT

i Φj to average over.
A further modification to (4) must be made, since a TFT,

and thus the piecewise-linear model, does not multiply by 1,
but rather introduces a scaling constant G, dependent on the
transconductance of the device:

Distance from Identity=
1(
N
2

)×
∑
j �=k

∥∥∥∥
1

M
×G×ΦjTΦk−INC

∥∥∥∥
1

(5)

where j, k refer to the effective Φ for different features (i.e.,
different rows of the image) and N refers to the total number
of effective Φ across all images. For this piecewise-linear
model, G is calculated based on the selected slope of the ideal
model. More specifically, G is equal to the inverse of this slope
squared. This is because, in calculating ΦjTΦk, this slope, or
transconductance, is included twice: once in Φj and once in
Φk. Indeed, since introducing variations results in different
φ, and thus effective transconductance, this G is still a good
approximation, since it represents the average transconductance
across all devices.

To observe the effect of these variations onΦTΦ, with respect
to compression factor, the distances are calculated for NC =
80, for various σVT /σγ using (5) (averaged over 10 different
sampling cases per σVT /σγ). Since the effective Φ depend
on the input voltages, we use 10 80 × 80 images (resized)
from the MNIST database of handwritten digits, resulting in
800 different Φ. Moreover, the ΦTΦ distances from MINC are
averaged across 10 different ideal Φ (i.e., 10 different cases
of matrix entries from Bernoulli sampling). Fig. 13 shows the
simulation results for various compression factors. As expected,
as σ increases, the distance of ΦTΦ from identity increases,
particularly at higher compression levels.

Indeed, the piecewise-linear model allows us to analyze the
effect of device variations onΦ. However, we are also interested
in measuring the effects of TFT transfer-curve shape (i.e., non-
linearity) on Φ. This is explored next.

B. TFT IDS vs. VGS Curve Lookup Table
for Nonlinearity Analysis

To measure the effect of the TFT transfer curve non-linearity,
we use a lookup table of IDS vs. VGS curves derived from mea-
surement. In order to also include the effect of threshold voltage
and mobility variations, 80 different measured transfer curves
are used in the lookup table (Fig. 14). Thus, since NC=80,
there is a different TFT curve for each sensor signal for a given
row of the image. Similar to the piecewise-linear model, non-
linearity in the TFT transfer-curve leads to a different effective
multiplier φa (i.e., entry in the Φ matrix) for different input
pixel voltage values. Thus, the effect of non-linearity in the
TFT transfer curve is quantitatively measured using (5). Since
this is not an ideal, piecewise-linear curve, it is more difficult
to calculate an appropriate G. This is because there is no single
slope to base it on as in the piecewise-linear model. Thus, G is



1840 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 63, NO. 11, NOVEMBER 2016

Fig. 13. Distance of ΦTΦ from MINC versus standard deviation of the threshold voltage and slope for various compression factors, simulated using a piecewise-
linear model (red markers) and measured TFT transfer-curves (blue marker). 10 images from the MNIST database of handwritten digits are used as sensor data.
The data is averaged over 10 different ideal Φ, with NC = 80.

Fig. 14. The 80 TFT IDS vs. VGS curves used in the lookup table to measure
distance of ΦTΦ from MINC.

calculated by averaging the ratios of the diagonal of the scaled
identity matrix (M × INC) over the diagonals of ΦjTΦk:

G =
1(
N
2

) ×
∑
j �=k

∑
M × INC,Diagonal∑
(ΦjTΦk),Diagonal

. (6)

where j, k refer to the effective Φ for different features (i.e.,
different rows of the image) and N refers to the total number of
effective Φ across all images.

Since the 80 measured transfer curves have a σVT and σγ
shown in Fig. 9 (the measured σμ is used to estimate σγ),
we can compare the effect of the nonlinear TFT transfer-curve
shape to the piecewise-linear transfer-curve shape for these
values of σ. This is shown as the blue marker in Fig. 13. We
observe that the nonlinear TFT transfer curve indeed causes
a larger distance of ΦTΦ from MINC, implying that TFT
nonlinearity has notable impact.

Fig. 15. Comparison of distance of ΦTΦ from MINC versus 1/
√
M for ideal

Φ, the piecewise-linear model and a TFT transfer curve lookup table. For the
piecewise-linear model, the red band refers to the area covered by varying σVT

and σγ. 10 images from the MNIST database of handwritten digits are used
as the sensor data for both the piecewise-linear model and TFT transfer curve
lookup table simulations. The data is averaged over 10 different ideal Φ, with
NC = 80.

C. Comparison With Ideal Φ

We know that even for an ideal M ×NC Φ, ΦTΦ does not
exactly equal MINC, especially as M decreases (for instance,
this can be seen in Fig. 3(a)). Thus, we require a baseline with
which to compare the effects of TFT variations and nonlinear-
ity. It is natural to use a baseline that corresponds to the distance
from identity of ΦTΦ, for an ideal Φ, using (2).

Fig. 15 shows the distances from an identity matrix when
using an ideal Φ, a Φ based on the piecewise-linear model of a
TFT transfer curve (with simulated variations), and a Φ based
on measured TFT transfer curves (with measured variations).
As expected, the ideal Φ has the lowest distance from identity,
while the TFT curve simulation has the largest distance from
identity. From this comparison, the relative effects of TFT
variations and nonlinearity can be clearly observed.
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Fig. 16. Testing setup for image compression system prototype.

While distance from the identity matrix is a useful metric for
analyzing the feasibility of implementing random-projection-
based compression using TFTs, in an eventual system, classi-
fication and reconstruction performance is of ultimate interest.
While we experimentally show the reconstruction performance
achieved by our prototype system, we are particularly interested
in demonstrating classification performance. In the following
section, we show experimentally that with practical levels of
TFT variation and nonlinearity, a classification system for
recognizing images of numerical handwritten digits can achieve
significant levels of compression.

V. SYSTEM DEMONSTRATION

In this section, details of the image sensing and compression
system prototype are presented. Fig. 16 shows the experimental
setup. The system prototype consists of a-Si photoconductors
and a-Si TFTs fabricated onto two separate 8 × 8 cm glass
substrates at temperatures < 180 ◦C.

The system represents an 80 × 80 active-matrix array of
photoconductor pixels (i.e., NR = NC = 80) using an array of
80 sensors (with ∼4 mm spacing) fabricated onto one glass
substrate. A micro-projector is used to project the images, row-
by-row, onto the photoconductors. Since the photoconductors
are not positioned in a single row, but rather are distributed in a
rectangular array, the projected image data is re-arranged from
a single row to fit the arrangement of sensors in the array (as
shown in Fig. 4). Thus, one pixel of image data is projected onto
a single, corresponding photoconductor. The outputs from the
sensor array are passed to the next substrate which contains the
TFT-based compression matrix. To facilitate testing, a switch
board is used, which enables 80 TFTs to be configured to any
combination of ±1 required to implement the different M rows
of Φ. The TFT currents, thus combined, are fed to two TIAs
(for the +1 and −1 summing nodes), whose output voltages are
acquired by a PC using a DAQ system. By cycling through M
different switch configurations (corresponding to theM rows of
Φ), we can generate the M -element output �yi with just 80 TFTs
(instead ofM × 80) and two TIAs (instead of 2M ). In this way,
this system can implement any compression factor; indeed, in
an actual system where only a single compression factor would
be implemented, the M × 80 TFTs implementing Φ would be

Fig. 17. A subset of the dataset derived from images from the MNIST database
of handwritten digits [13], resized from the original 28 × 28 to 80 × 80 pixels,
used for image classification and reconstruction.

hardwired to the corresponding +1 and −1 summing nodes.
Finally, the PC concatenates the compressed outputs across all
rows of the projected image, after which image classification
and reconstruction can be performed.

To demonstrate the performance of the image compression
system, image classification and reconstruction is performed
on images from the MNIST database of handwritten digits. In
total, the dataset consists of 1500 images with equal number of
instances for each digit (“0” to “9”). Each image is resized from
the original 28 × 28 pixels to 80 × 80 pixels since the prototype
system emulates an 80 × 80 array of pixels. For illustration, a
subset of the images in the dataset is shown in Fig. 17.

A. Inner-Product Preservation

In order to analyze the quality of inner-product preserva-
tion by the implemented TFT-based compression matrix, we
are interested in the resulting effective Φ that corresponds
to the prototype system (i.e., how closely ΦTΦ represents
MINC). As mentioned in Section II, this information can be
extrapolated from the inner-product SNR. However, we use a
slightly modified definition of (1), namely with the addition of
a proportionality constant, α

Inner-product SNR =

∑
j �=k

(
Mα

(
�xjT�xk

))2

∑
j �=k

(
�yjT�yk −Mα

(
�xjT�xk

))2 (7)

where j, k refer to the different features. As previously men-
tioned, this is due to the fact that instead of actually multiplying
by ±1, a given TFT in the compression matrix outputs a current
in response to an input pixel voltage, which is determined by
the transconductance of the TFT. Thus, the scaling constant α
is introduced and set using:

α =

∑
j �=k

�yjT�yk

M ×
∑
j �=k

(�xjT�xk)
. (8)

Fig. 18 shows the inner-product SNR (as defined in (7)),
versus length of the compressed signal, M , obtained from the
thin-film compression system averaged over 20 images. Even
for a shorter input signal length (NC = 80), the data follows
the expected trend (shown in Fig. 3(b)), though we observe a
lower inner-product SNR. This is due to the addition of noise
from variation in the sensors, as well as both the variation and
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Fig. 18. Inner-product SNR collected from 20 of the images from the MNIST
database of handwritten digits that were compressed using the TFT-based
compression block Φ.

transfer-function nonlinearity of the compression-matrix TFTs
(as discussed in Section IV).

Nevertheless, as we see from the following classification
results, an adequately high inner-product SNR is achieved even
for small lengths of the compressed signals.

B. Image Classification

As mentioned in Section IV, classification benefits from the
fact that we do not need to know the precise compression matrix
Φ utilized (indeed the precise Φ is difficult to know in the
presence of variation and nonlinearity). Further, classification
benefits from the ability to train the classifier to data resulting
from the non-ideal compression. Thus a high level of classifica-
tion performance and/or a high level of compression is possible.

To demonstrate this, one-versus-all classification is per-
formed for each digit using a SVM with a radial-basis-function
kernel. For ease of testing, a MATLAB-implemented SVM
classifier is used; however, such a classifier can be readily
integrated in a CMOS IC [23]. To divide the dataset into ap-
propriate training and testing subsets, ten-fold cross validation
is performed.

To characterize the classification performance we measure
the true-positive (tp), true-negative (tn), and error rates, which
are defined (for the case where we wish to classify the digit “0”
vs. digits “1” to “9”) as:

tp rate =
# of correctly classified “0”s

Total # of “0”s in the test dataset
(9)

tn rate =
# of correctly classified other digits

Total # of other digits in the test dataset
(10)

error rate =
# of incorrectly classified digits

Total size of test dataset
. (11)

The measured tp, tn and error rates, for all digits, versus
compression factors between 8× to 80×, are shown in Fig. 19.
High levels of classification performance are observed, even out
to large compression factors. For instance, at 20× compression,
the average tp/tn/error rates are 90%/93%/7%. This is typical
of the performance achieved with this dataset [13], yet with a
substantially reduced number of interfaces (i.e., from 80 to 4 in
this proof-of-concept demonstration).

C. Image Reconstruction

Though our primary interest for this system is classification,
we also perform image reconstruction, assuming that ΦΨ sat-
isfies RIP (as required for compressive sensing). Here, Ψ rep-
resents the 1-D DCT basis, wherein images exhibit sparsity. In
this case, using, for instance, the gradient projection for sparse
reconstruction algorithm (GPSR) [24], it is possible to solve for
the transform coefficients from the compressed outputs.

Fig. 20 shows representative results of a reconstructed image
of a handwritten “3” for compression factors ranging from
1× to 6×. Though our experimental approach is based on
measuring the TFT transfer functions to precisely characterize
theΦ transform applied to each input image, in a typical system,
we expect that such measurements would not be performed.
Thus, precisely knowing Φ, which is required for reconstruc-
tion, would not be possible in the presence of TFT variations
and nonlinearity. Consequently, reconstruction performance is
degraded compared to classification performance, especially as
the compression rate increases. Furthermore, image compres-
sion algorithms such as JPEG use a 2-D DCT [14] for the
sparsity basis Ψ, whereas we employ a 1-D DCT; this is because
accessing the pixel array using an active matrix configuration
precludes use of a 2-D DCT. That is, accessing only the column
data for a given row results in loss of spatial information
across rows. Finally, as a result of our experimental approach,
where readout of an NR ×NC active matrix is represented by
projecting images row-by-row on a single set of NC sensors, we
observe that the sensed image (before TFT-based compression)
exhibits a horizontal pattern (note that the image is rotated
such that a horizontal pattern corresponds to a row of sensors)
(Fig. 20). Such a pattern is also observed in the reconstructed
images; but its impact on classification is believed to be min-
imal since training accounts for such variations. Nevertheless,
it can be seen that for image reconstruction, some compression
can be achieved.

VI. CONCLUSION

In this paper, we presented an image compression system
based on LAE thin-film devices. LAE allows the formation
of large area yet dense sensing arrays, which are suitable for
use in large-scale systems. However, such systems require a
LAE-CMOS hybrid architecture, as TFTs cannot compare to
the high efficiency of CMOS ICs for processing and analysis of
sensor data. Yet, difficulties in interfacing the two technologies,
particularly due to the large number of interfaces, have made
the implementation of such systems challenging.

A widely-used circuit-based approach for addressing sensor-
interfacing challenges is the active matrix, through which
sensor data is read out row-by-row, reducing the number of
interfaces by approximately a square-root factor. Nevertheless,
even when using active-matrix accessing, the number of inter-
faces scales with the total number of sensors. By incorporating
random projections, a concept from statistical signal process-
ing, the number of interfaces can be further reduced. Thus,
we presented a thin-film image compression system, which
employs a TFT-implemented block for multiplication by an
M ×NC random-projection matrix, in conjunction with an
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Fig. 19. One-versus-all classification performance (i.e., true-positive, true-negative, and error rates) of images from the MNIST database of handwritten digits
versus compression factor for all digits (“0” to “9”) (top) and averaged across all digits (error bars show min/max performance across digits) (bottom).

Fig. 20. Reconstruction of an image of a “3” from the MNIST database of handwritten digits with different compression factors using GPSR. Images are rotated
90 clockwise for visualization.

NR ×NC active matrix, to substantially reduce the number
interfaces by a factor of NC/M .

The performance of the system was demonstrated by imple-
menting classification and reconstruction of images from the
MNIST database of handwritten digits. Emulating an 80 × 80
active-matrix array of photoconductor pixels, up to 80×
compression of the 80 interface-signals was demonstrated,
with 20× compression achieving average tp/tn/error rates of
90%/93%/7%.
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