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ABSTRACT We have constructed microfabricated devices, de-
signed to have asymmetry in their physical structures, in order
to fractionate objects under continuous-flow conditions. The
fractionation of particles with the inclusion of diffusion and
asymmetric structures requires a knowledge of not only statisti-
cal mechanics but also the external forces acting on the particles,
since thermal Brownian fluctuations alone cannot serve to sep-
arate particles. We explicitly examine this problem in a device
designed to fractionate biomolecules dissolved in water, and
show that boundary conditions that influence the direction of the
applied force are quite important in determining the efficiency
of the device.

PACS 87.10.+e

1 Introduction

The concept of a rachet (in our view, an asymmetric
object that would rather turn in one direction than in another)
has always fascinated scientists because it seems to violate the
fundamental reversibility of classical mechanics. Feynman,
in his beautiful Lectures on Physics [1], considers the rachet
and pawl at some finite temperature T and shows that in equi-
librium the rachet and pawl cannot rotate in a unidirectional
sense, but can if a temperature gradient is applied to the sys-
tem so that energy flows through the system irreversibly. It is
fascinating to continue this line of thought and ask how some
sort of irreversible net displacement of an object can occur
in an array of asymmetric microfabricated structures of such
a length scale that diffusive motions in some time t are compa-
rable to the size of the obstacles that an object passes through.
Since diffusion is a function of particle size, such a device
could separate particles almost magically.

Rather than speak in generalities for this paper, let us con-
sider a very specific example which rather weakly falls under
the case of ratchets, namely the passage of particles through
an array of structures which are inclined at an angle to the
average direction of a force applied to the particles. We stress
the word ‘average’ here because the presence of the obstacles
not only can serve to deflect the particles but also can change
the local orientation of the force field acting on the particles.

✉ austin@princeton.edu

We also explicitly assume that the medium is water, an in-
sulating fluid. The ionic flow that carries the field lines then
implies that the transport is fundamentally hydrodynamic in
nature and not electrostatic.

Let us first consider the ideal situation of a force field
which magically can penetrate the obstacles as if they were
not present. In that case the obstacles are driven straight down
by the force field, but upon collision with the obstacles must
move either to the right or left in order to pass around the ob-
jects. Figure 1 shows a possible configuration where molecules
confined to a region in space are confined spatially in a gate
and move under the influence of a force which simply makes
them fall straight down in the absence of thermal diffusion, at
a constant velocity v. There is a characteristic length d, which
is the distance that the object must move between openings, the
average distance 〈d〉 ∼ d which is the mean of the asymmet-
ric distances dL +dR of the obstacles perpendicular to the flow
(inFig. 1 〈d〉 = [dL +dR]/2), and theasymmetryδd = dL −dR,
which represents the extra distance that the object must move
to the left to get around an obstacle compared to the right. Since
there is no diffusion at present in the discussion, this asymme-
try is irrelevant. Particles move straight down. The time t to
move between holes is simply

t = d/v. (1)

FIGURE 1 A simple structure. Particles can move straight down in the di-
rection v under the influence of an applied force, which can penetrate the
obstacles. The initial distribution of the particles is confined to the gate.
A working device would consist of a periodic array of such structures
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Now, consider what happens if we allow diffusion to occur.
Although the particles continue to move straight down, there
is now a transverse but random displacement due to diffusion
of the object. In the time that it takes the particles to move to
the next hole there will be a lateral RMS displacement:

δx = 〈x2〉1/2 (2)

of the particle to either side of the driving direction v. Ignor-
ing the effects of hitting the obstacles, which we will consider
shortly, one might guess that the mean displacement left or
right is zero unless:

dR ≤ 〈x2〉1/2 ≤ dL, (3)

in which case there is a good probability that the particle will
move to the right. This can be viewed as a ratchet: the particle
moves consistently to the right under the influence of a field
pointing straight down. It violates no laws of thermodynamics
because (i) it is a system not in thermal equilibrium but in-
stead has a steady input of energy, the field driving the particle
downwards; (ii) there is a spatial asymmetry to the structure.
Both conditions must be met in order for this asymmetric mo-
tion to occur under the influence of a steady applied force.

Such a device can fractionate objects in principle, because
the lateral displacement δx ∼ (2Dt >1/2 is a function of the
size of the object through the diffusion coefficient D. Roughly
speaking, we can say that small objects will be deflected to the
right more frequently than large objects because δx is smaller
for large objects than for small objects. Because the displace-
ment δx is a function of both diffusion coefficient D and time
t this sort of a fractionating device can have a large dynamic
range. Discussions of such devices can be found in [2, 3] and
realizations of such devices can be found in [4, 5].

There is, however, a problem with the technique that has
not be explicitly addressed in any of the papers to date. There
was a fundamental assumption which we put in bold face at
the start of this article which we will repeat here:

Let us first consider the ideal situation of a force field
which magically can penetrate the obstacles as if they were
not present.

About the only force we know which can do this is gravity,
although magnetic forces can approximate this if the obstacles
have a very small permeability so that the induced magneti-
zation M 
 B. Other common force fields in conducting li-
quids, typically electrophoretic or hydrodynamic, cannot pen-
etrate obstacles. For example, suppose we microfabricate our
device out of quartz, an insulating material. Then, we if use
electrophoresis to move the objects down the device the elec-
tric field lines, which are determined by the paths of the ions
which carry charge in an insulating liquid, must pass around
the insulating obstacles rather than through, with dramatic
consequences as we shall see shortly. Likewise, if we use hy-
drodynamic flow rather than electrophoresis, once again the
fluid must pass around the obstacles rather than through them.

In fact, and this is a major point of this paper, it is pos-
sible to make an argument that in the absence of penetration
of the field lines into the obstacles there can be no fractiona-
tion in an asymmetric structure for point particles. We present
it here for the case of electrophoretic transport, in which case

transport occurs through electric fields E which arise from the
movement of ions in the fluid:

v = µE, (4)

where µ is the mobility of the electrophoretically transported
object.

Since the electric field is due to the movement of ions in
the electrically neutral fluid, and the fluid is incompressible,
the divergence of the electric field E and consequently the di-
vergence of the velocity of the particles v must be zero:

∇ • E = 0; ∇ • v = 0. (5)

Consider the generic asymmetric structure shown in Fig. 2,
which resembles the structures we have used in our own labo-
ratory. We have also shown the field lines around this structure
if the obstacles are opaque to the force field, so that no field
lines can penetrate the object. These field lines have been cal-
culated by solving the Navier–Stokes equation in the case of
a ‘thin’ 3-D object, where ‘thin’ means that the thickness h of
the structure is much less than the dimensions x, y of the lat-
eral etched structure. This is quite good an approximation in
our case because the etch depth is of the order of 1 micron,
while the lateral dimensions are hundreds of microns. Details
of this calculation can be found in [7].

We now do the fundamental derivation for incompressible
flow. Let the density of objects in the flow be 	. In the absence
of diffusion the local flux J of the particles is then

J = 	v. (6)

FIGURE 2 Field lines in the case of a zero-divergence force field. In that
case there can be no net transport by diffusion to the right or left if the particle
distribution is initially symmetric around the mean coming into the array. The
flux tube bounded by the (−1, 0) and (o,+1) surfaces is schown, and the
one-dimensional surfaces which separate the (−1, 0) and (0,+1) flux tubes
are shown
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First consider the case where the diffusion coefficient D is
zero. The local change in the particle density with time is

∂	

∂t
= −∇ • J = −∇ • (	v). (7)

In a steady-state flow ∂	

∂t = 0. We then find

0 = ∂	

∂t
= −	(∇ • v)−∇	• v. (8)

Since ∇ • v = 0, we get

∇	• v = 0. (9)

Thus, any gradient in 	 due to transport must be perpendicular
to v. The consequence of this equation is a subtle point which
we have tried to illustrate in Fig. 3. Since a streamline is a line
parallel to v, we can say that 	 cannot change along a stream-
line and hence any initial distribution in particles is perfectly
preserved, and hence no fractionation can happen. Thus, the
gradients ∇	 in the particle distributions that occurred with
transport must be perpendicular to v, not parallel.

Now consider what happens when we turn on diffusion.
The flux now has two terms:

J = 	v− D∇	. (10)

There are now certainly finite values to the gradient in 	 that
can occur parallel to the velocity vector, since with time diffu-
sion can spread the initial particle distribution in any direction.
But spreading of the initial distribution with distance does not
represent fractionation in an asymmetric array; fractionation
by ratcheting occurs by movement of the mean of the moment
with distance. We consider the case where the particle distri-
bution is symmetric around the mean coming into the array.
Figure 4 contrasts this situation with the zero-diffusion situ-
ation. Once again, all gradients in the particle distribution that
occurred due to diffusion must be perpendicular to v.

We next consider a distribution of particles where the
mean width σ covers many gates. Label the gates with the in-
teger i. ‘Symmetric around the mean’ means the following: let

FIGURE 3 The incompressibility of the particle flux moving through struc-
tures in the case of no diffusion means that there can be no gradient in the
particle flux perpendicular to the velocity v

FIGURE 4 Diffusion can give rise to gradients in the particle density orth-
ogonal to the velocity v. However, the mean position of the profile cannot
change even in the presence of diffusion if the force field has zero divergence
everywhere

i = 0 be the gate where the mean of the distribution moves.
Let 	±i be the densities for gates ±i to the right and left of the
i = 0 gate. The density distribution is symmetric if 	+1 = 	−1.
Movement of the mean can only occur if the diffusional flux
across symmetrically opposed cells ±i is unequal in direction
and/or magnitude.

The net flux transport φS across a streamline S which sepa-
rates two flux tubes of particle flow between adjacent barriers
(see Fig. 2) is

φS =
∫

S

J ×dS =
∫

S

	v×dS− D
∫

S

∇	×dS. (11)

Since v is parallel to dS the first term is zero and we get

φS = −D
∫

S

∇	×dS. (12)

However, if 	 is symmetric around the channel labeled i = 0
(so that 	i = 	−i and ∇	i = −∇	−i then φi = −φ−i and the
distribution broadens, but the mean cannot shift. There is no
asymmetric flux.

Does this mean these devices cannot work? No, they can
work in two ways. First, if the force lines actually penetrate
the obstacles rather than pass around them then there are ad-
ditional terms to the force acting on the particles in addition
to the field E, that is, the velocity vector v is no longer strictly
proportional to E and our integrals no longer sum to zero. Fig-
ure 5 gives an example of what happens when the structure
allows field lines to penetrate it due to slightly permeable ob-
stacles. We have numerically solved Laplace’s equation with
a finite conductivity and you can now see penetration of the
field lines into the structure. Four field lines are shown, num-
bered 1, 2, 4, 7. On field line 2 we show a diffuse random
polymer following field line 2, impacting the structure, and
then following along the structure to the first opening. In this
case the object still remains within the core of stream lines as-
sociated with the original channel but now has crossed over
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FIGURE 5 Field lines in the case of conducting structures. Four selected
field lines are shown. A diffuse object is shown moving along field line 2 and
then sliding along the object when the field line enters the object and exiting
along the bottom along the 6th field line. Field line 7 delineates the boundary
between adjacent flux bundles associated with different structures

four lines to line 6 and is close to moving over to the next ob-
stacle set. This has to happen by diffusion, but the breaking of
symmetry by the finite conductivity of the obstacle has made
that more probable.

Even in the absence of field penetration there can be
fractionation if the particle density 	 is not symmetric in
space to the obstacles, which we assumed in (12). An ob-
vious example of this is the following: suppose a stream of
particles is released to flow near a wall. Since there is now
a spatial asymmetry to the flow the smaller particles will
diffuse further from the wall than the larger ones and frac-
tionation will occur if another set of obstacles occur which
divides the stream. When we wrote 	i for the ith channel
we assumed that the particle density 	 changed slowly and
smoothly enough over one channel distance that it was not ne-
cessary to specify 	 more finely. If, as we considered in the
beginning example for this paper, all the particles are con-
centrated in one channel, then our symmetry assumption is
wrong.

Finally, we can consider what happens if the objects are
large compared to the obstacle gaps. In this case the object
is physically excluded from a region along which the stream-
line would want to move it and this also acts as an addi-
tional force over the normal electrophoretic force. The fluid
streamlines are not affected but the size of the obstacle is now
effectively a function of the size of the particle. The net ef-
fect is to make the obstacle effectively permeable to the field
and hence capable of fractionation. However, it is difficult
to calculate analytically this effect. More traditional ratchet
techniques which use a zero-time-average oscillating force
field [6] may utilize this aspect of the boundary condition as
their primary fractionating mechanism, although that is not
clear at present.

2 Experiments

There are two papers in the literature that claim to
have seen fractionation in asymmetric steady flow. If this is the
case, they must have avoided the problems associated with in-
compressible flow that we discussed in Sect. 1. We will now
briefly discuss how this could be.

In the case of the Boxer group’s experiments [5], they
made asymmetrical structures that allowed for the movement
of rapidly diffusing particles to the left and slowly diffusing
particles to the right. Figure 6 addresses their configuration.
A wall placed on the left-hand side provided the asymmetri-
cal boundary for the diffusional asymmetry to occur. Now, as
we described above, if the fluid was entirely contained within
the structures there would have been a weak fractionation due
to diffusion from the wall but no fractionation due to the ob-
stacles themselves. However, there was a trick. The liquid that
was contained within the obstacles was a lipid bilayer, while
on top of the lipid and the structures was an aqueous solution.
The aqueous solution carried the ionic flow and generated the
electric field, which presumably dragged the molecules in the
lipid bilayer against the structures. Thus, in Fig. 6 we have
drawn the force vectors F as penetrating the structures rather
than moving around them. In that case, as we have discussed,
the cancelation of the diffusive fluxes does not occur.

The second paper is the one by Chou et al. [4], which
had asymmetrical rectangles inclined at an angle to the aver-
age electric fields generated by ionic flow. Unlike the case
of van Oudenaarden and Boxer, this was an entirely sealed
device with the liquid confined within the structures. If in-
deed the posts were entirely insulating then Fig. 2 would hold
and the device should not fractionate. Yet there was clear evi-
dence presented in this paper that at least statistically the DNA
molecules moving through the array were deflected on the
average to the right and small ones were deflected to a larger
distance than the large ones.

How can this be? There are two explanations, although
at this point the reasons we give are rather guesses because
careful control experiments were not done at the time of

FIGURE 6 The configuration used by van Oudenaarden and Boxer [5] in
their lipid-phase separations
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FIGURE 7 Motion of a roughly 50-kbp-long DNA molecule moving
through the asymmetric lattice shown in Fig. 2. This data was taken from
video images used in Chou et al. [4]. Images of the DNA molecule were taken
at 0.5-s intervals, in the numbered sequence

the experiments. First, the insulating posts used were proba-
bly not entirely insulating; they were made of what is called
plasma enhanced chemical vapor deposited (PECVD) quartz.
PECVD quartz is well known to have a much more disordered
and permeable structure than thermal quartz, which is ther-
mally grown out of silicon. Thus, it is possible that there was
substantial ionic flow through the quartz structures and hence
condition (4) was not satisfied.

But our list of possible reasons for inexplicable success
does not have to be mere theoretical musings, we can actually
test our assumptions. Video images of single DNA molecules
moving in the lattice shown in Fig. 2 show the paths that the
molecules follow and can be compared to the insulating post
predictions. Figure 7 shows images of a DNA molecule mov-
ing between posts. This set of data was used in the paper by
Chou et al. to show that rectification of molecules could occur
in such a lattice. The motion of this particular molecule is
clearly not in the direction of the expected pattern for totally in-
sulating objects, indicating that the field lines did penetrate the
posts.Also, thedeformationof therandomcoilof theDNAas it
impacts an adjacent obstacle is clear. This video can be seen at
the web site of the Austin group [8]. These images would indi-
cate that this experiment did indeed work because the assump-
tions of the first part of the present paper were not fulfilled.

3 Close to success

We will close with a new design which should al-
low us to have uniform flow, discuss briefly why this design
did not work because the first attempt used hydrodynamic
rather than electrophoretic flow, and discuss new technologies
to guarantee force penetration of the structures.

Neither the paper by van Oudenaarden and Boxer nor the
paper by Austin’s group showed really useful results. A use-
ful particle-fractionation device would separate particles on
a ‘macroscopic’ basis into clearly defined separate regions
of space for later analysis. Van Oudenaarden and Boxer did
not have well-formed and separated particle lines, nor did

Austin’s group have well-defined particle lines. Van Oude-
naarden and Boxer relied upon doing an analysis of particle-
distribution means to determine if fractionation occurred,
while Austin’s group did a statistical analysis of individual
particle trajectories, as we showed in Fig. 7.

In the case of Austin’s group, one problem lay with the
inability to create a well-defined initial stream of particles
in a open microfabricated space of asymmetric objects. Re-
cent papers exploiting hydrodynamic ideas of Huang and co-
workers [7, 9] have, however, shown that is is possible to
create extremely well-controlled jets of very narrow particle
streams over large areas, even in an array of asymmetric struc-
tures. We will not repeat the details of the ideas here but
rather simply point out that the key idea is to create a series of
high-impedance current sources across all boundaries of the
structure. Figure 8 shows the basic idea behind this current-
injector scheme.

In order to test this device it was decided to run a sample of
large and small fluorescent balls which are dyed different col-
ors, making it relatively easy to track the positions of the two
different-size balls. The large balls, dyed green, are 1 micron
in diameter and the small balls, dyed red, are 0.1 microns in
diameter. Because of optical resolution limitations, the small
balls appear as a red haze while the larger green balls are re-
solved as separate balls.

A fatal flaw in this experiment, if you will, was the deci-
sion to use hydrostatic pressure rather than electrophoresis.
The decision to use hydrostatic pressure was perfectly reason-
able, since it was found that the electrophoretic mobility of the
spheres was not equal and this would confound the analysis.
However, in the case of hydrostatic pressure, even if the struc-
tures are made conducting, it is very unlikely that they will
be equally permeable to hydrodynamic flow and most likely
impermeable. In that case the divergence free flow conditions
will apply and there will be no fractionation in the structure by
the arguments we have given.

Figure 9 shows that the hydrodynamic flow patterns de-
vised by Huang do indeed work: a beautiful jet is formed with

FIGURE 8

a b
a The basic idea: in order to create contours of equal-pressure

isobars across the device (isobars are shown as the lettered lines), a parallel
series of microfluidic ‘resistors’ are constructed so that fluid injection ef-
fectively occurs via current sources. b Detail of the microfabricated device,
showing the input of the high-impedance resistors into the array
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FIGURE 9 A image of a stream of fluorescent balls entering a diffusion ar-
ray designed with a net of fluidic resistors. Two different ball sizes are within
the stream

no bulging and straight flow down the through the array of ob-
stacles. However, although there are two sets of balls in the jet
there is no clear separation of the balls into two streams. Of
course, as has been previously discussed [2, 4], there is a di-
mensionless ratio R of parameters which sets the resolving
power of a thermal ratchet device:

R = D

va
, (13)

where D is the diffusion constant of the object, v is its trans-
port speed through the device, and a is the characteristic dif-
fusion length needed to cross between flux tubes. Maximum
resolution is believed to occur if R ∼ 1, so without know-
ledge of R it is not possible to determine the performance of
the device. However, under hydrostatic flow conditions over
a variety of R values ranging from 0.1 to 10 no stream sepa-
ration was observed.

It was possible to observe a longitudinal fractionation that
has nothing to do with ratchets, however. A pressure pulse was
applied to the jet causing it to widen briefly, then the pressure
was reduced. This created a burst of balls in the chip, which
was etched 1 micron deep. Since this is low Reynolds number
flow, the flow in the device is laminar and there is a parabolic
velocity profile in the thin etched direction (see Fig. 9). The
small red balls have a large diffusion constant and basically
see the average of the parabolic profile, a process called 250
diffusion [10], and so they move at a common speed in the de-
vice. The larger green balls, however, do not average over the
profile so rapidly and move with a heterogenous velocity dis-
tribution, some faster and some slower than the average. Thus,
we would expect to see that the green-ball distribution will
both lead and lag the main red-ball distribution in the array.
Figure 10 shows exactly this phenomenon.

FIGURE 10 The separation of ball sizes that occurs when a pulse of balls is
injected into the device. Although no lateral separation occurs, a subset of the
large balls moves faster on average than the small balls, because it is centered
in the parabolic profile of the flow

What to do next? It is very clear: we need to fabricate struc-
tures that are ion-permeable, run objects in electrophoretic
flow using the new multi-injector system that solves the
boundary values, and see if the devices can live up to the the-
oretical predictions. More theoretical work needs to be done
also on what is the effect of finite particle size, that is, what
happens when the mean particle size is comparable to the size
of the gaps through which the objects flow. The averaging
over the field profiles could change the performance of these
devices. The devices remain fascinating, but are still rather
poorly understood.
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