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Nanopatterning of Si /SiGe electrical devices by atomic force microscopy
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Two nanopatterning methods for silicon/silicon-germaniui8i/SiGe heterostructures are
demonstrated(1) direct atomic force microscopfAFM) oxidation on SiGe layers an@) AFM
oxidation on silicon followed by selective wet etching of SiGe. When directly oxidizing SiGe alloys,
minimum linewidths of 20 nm were achieved by adjusting the bias voltage of the AFM tip. By AFM
oxidation and selective wet etching, a 10-nm-thick conducting SiGe layer was patterned to form
features under-50 nm. Fabricated SiGe quantum dots with side gates exhibited Coulomb blockade
oscillation. © 2002 American Institute of PhysicgDOI: 10.1063/1.151511]3

Si/SiGe heterostructures have much higher carrier mo- The first nanopatterning method used was direct AFM
bility than silicon field-effect transistors’ Si/SiGe nanode- oxidation of the SiGe layer. Isolated line scans were per-
vices, such as quantum dots, may offer new device functionformed with a tip bias voltage betweenl0 and—32 V with
ality. Therefore, nanopatterning of Si/SiGe heterostructuresespect to the substrate. During AFM lithography, the tip
has been of great interest. The conventional nanofabricatiowriting speed was-1.6 um/s. The resulting volume expan-
techniques are electron-beam lithography and reactive-iogion associated with oxidation causes a raised oxide feature
etching (RIE). These are high-energy processes which caro appear, which was characterized in a regular AFM scan.
cause radiation and etching damage, leading to the possibiHF wet etching to remove the oxide faithfully transferred the
ity of interface states or deep levels in quantum devicesfeature into the SiGe alloy. A minimum linewidffull width
Thus, a low-energy patterning process is an important techat half magnituddFWHM)] of less than 20 nm occurs with
nological challenge for the fabrication of nanostructure de-a bias voltage-14 V, causing a feature-1.0 nm above the
vices. Recently, atomic force microsco#FM) with low  surface after oxidation and a depression~d.8 nm after
tip voltages(~10 V) under a controlled humidity environ- oxide removal. The oxide height, depth and width all in-
ment has been used to locally oxidize silicon. The oxidecrease with the bias voltagéFig. 1). The ratio of peak
feature size is on a scale of tens of nanometédanoelec-  heights of the oxide lines after oxidation to the valley depths
tronic devices using AFM oxidation have been fabricated orafter oxide removal is about 3:2. This corresponds to a ratio
silicon, metal and gallium arsenide® However, AFM oxi-  of SiGe removed to the total oxide thickness-e@.4, which
dation patterning of Si/SiGe heterostructures has never beds close to that observed in conventional silicon oxidation of
demonstrated to the best of our knowledge, although strained0.44.

Si/SiGe heterostructures give superior carrier transport mo- Snow and Campbélhave proposed field-assisted anodic
bility compared with silicon. In this work, AFM methods of
nanopatterning Si/SiGe heterostructures are demonstrated
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lines on strained giGe,, alloys as a function of different bias voltages
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line is a fit of the height data using E(.). The inset is a schematic of AFM
oxidation and oxide removal.
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FIG. 2. (a) Process to pattern Si/SiGe nanostructures: AFM oxidation on the D T T P R HE E R S R T
Si cap; HF dip to remove SiQ and wet selective etching to pattern the T=053K
SiGe layer.(b), (c) AFM images of a SiGe quantum dot fabricated by this 101,: ’ E
nanopatterning approach after AFM oxidation and selective wet etching, . 3 T, _'.,_.-----"""'5
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formation of OH . The step heighh was fitted to the fol-

|0Wing model, which was used to describe the kinetics ofFIG. 3. (a) AFM image of a line cut across the Hall bar by AFM oxidation

AFM oxidation® and selective wet etching. The sample was pre-patterned by optical lithog-
raphy and RIE to create a mesa with Hall bar structdvgHall bar resis-
tance measurement &t=0.53 K before and after cutting a line across the

h(t,V)=V/EqIn[REt/V+1], (D Hall bar.

whereV is the tip bias voltage, is the exposure time to the
electrical field, andR andE, are constants. The best fit was this second method reduces pattern resolution due to anisot-
given by Eo=45 V/nm (the same as for Si in Ref.)&nd ropy of the wet etching, and increases the minimum line-
R= 1050 nm/s’ For similar conditions in our approaches, we width from 20 to 50 nm. However, 10-nm-thick SiGe layers
found AFM oxidation of silicon gives an oxidation feature were successfully patterned by this approach.
~50% higher than that which occurs on Si€eThermal Using AFM oxidation and selective wet etching, several
oxidation typically gives a thicker oxide on SiGe than on Si/SiGe electrical nanodevices were fabricated. First, we
Si, indicating a different mechanism of oxidation in this demonstrate that a narrow gap could be cut through a
AFM case. p " -Siy /Gey 5 strained layer of thickness 10 nm[shown in
From the above experiment, one finds that the maximunirig. 3@]. At low temperatures, holes are confined to the
thickness of SiGe oxidized by AFM lithographys2.0 nm.  doped SiGe layer by the valence band offset, so that cutting
This is thinner than the layer thickness of SiGe in manya line through the SiGe layer should break the electrical con-
nanostructure devices, so devices with a SiGe layer thickneghiction of that layer. A Hall bar-4 um wide was first pat-
greater than 2.0 nm cannot be completely patterned by terned by optical lithography and RIE, creating a mesa with
single direct AFM oxidation step. Therefore, the layer struc-height of ~200 nm. A line was subsequently cut through the
ture shown in Fig. @) was developed. First, the 2-nm-thick current path in the SiGe layer Hall bHFig. 3(a)] by AFM
silicon cap layer was locally oxidized by AFM; then the oxidation and selective wet etching as described above. The
silicon oxide was subsequently removed by diluted HF; and —V characteristics of the device were measured at 0.53 K
finally, wet etching (HF:HO,:CH;COOH=1:2:3) of the [Fig. 3(b)]. The resistance of the Hall bar increases from
SiGe with a selectivity~400:1 over silicof? transferred the  ~10 MQ before the line was cut te- 10" M) after the SiGe
oxide pattern into the strained 3Ge, 5 layer[Fig. 2c)]. A layer was cut, clearly indicating complete cutting of the
demonstration of this nanopatterning technique is shown ip*-SiGe layer.(The measurement was performed at low

Figs. 2b) and Zc). Compared with direct AFM oxidation, temperature to prevent holes from thermally escaping into
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-+ current has considerable noise, angscans in different di-
] L rections are not reproducible. We attribute these effects to the
6] |Vvds=-34mv i large number of traps on the surface of the SiGe. In the dot,
vV, = the electron wave function extends to the surface of the

1 |T=053K [ etched region, which is not passivat@kcept by a thin na-

54 = tive oxide. Thus, trapping/detrapping of charges at the sur-

i face are expected. Currently, we are working to improve the
surface passivation to eliminate charge traps at the dot—
insulator interface. Nevertheless, the results clearly show the
use of AFM local oxidation and wet etching as a low-energy

34 - patterning technique for Si/SiGe nanodevices.

In summary, AFM was used to pattern strained SiGe
films by local oxidation, and lines with FWHM smaller than
20 nm were demonstrated. The maximum amount of SiGe
consumed is~1.5 nm, which is~50% less than that of Si.

1 - AFM oxidation of silicon plus selective wet etching was
| I used to pattern thicker SiGe layers and to fabricate Si/SiGe
0 nanodevices. Electrical measurement of a SiGe quantum dot
14 12 10 -08 -06 shows Coulomb blockade oscillation, demonstrating the ca-
pability of this nanopatterning technique.
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