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Relaxation of compressed elastic islands on a viscous layer

J. Lianga, R. Huanga, H. Yin b, J.C. Sturmb, K.D. Hobartc, Z. Suoa,∗

a Department of Mechanical Engineering and Princeton Materials Institute, Princeton University, Princeton, NJ 08544, USA
b Center for Photonics and Optoelectronic Materials and Department of Electrical Engineering, Princeton University, Princeton,

NJ 08544, USA
c Naval Research Laboratory, Washington, DC 20375, USA

Received 8 November 2001; accepted 5 February 2002

Abstract

A recent technique can fabricate SiGe thin film islands on a glass layer, which itself lies on a silicon wafer. The
islands initially have an inplane compressive strain. Upon annealing, the glass flows, and the islands relax. The resulting
strain-free islands are used as substrates to grow epitaxial optoelectronic devices. This paper models the annealing
process. A small island relaxes by inplane expansion. The glass being viscous, the relaxation starts at the island edges,
and propagates to the island center. A large island, however, wrinkles at the center before the inplane relaxation arrives.
Further annealing gives rise to one of two outcomes. The wrinkles may disappear when the inplane relaxation arrives,
leading to a flat, strain-free island. Alternatively, the wrinkles may cause significant tensile stress in the island, leading
to fracture. We model the island by the von Karman plate theory, and the glass layer by the Reynolds lubrication theory.
The solid and the fluid couple at the interface by the continuous traction and displacement. Numerical simulations evolve
the inplane expansion and the wrinkles simultaneously. We determine the critical island size, below which inplane
expansion prevails over wrinkling. This critical island size depends on several experimental variables, and is much larger
than the Euler buckling wavelength. 2002 Acta Materialia Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

For nearly half a century, Si has been the pre-
vailing substrate in the microelectronic industry.
Integrating other materials on Si has been a persist-
ent challenge. Recently, various “compliant sub-
strates” have been fabricated for optoelectronic
applications [1]. Fig. 1 illustrates one fabrication
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process [2,3]. First grow an epitaxial SiGe film on
an Si host wafer. Because SiGe has a larger lattice
constant than Si, the SiGe film is compressively
strained, and is made very thin to avert threading
dislocations [4]. Separately prepare a layer of boro-
phosphorosilicate glass (BPSG) on an Si handle
wafer. Stack the two wafers by the wafer bonding
method, with SiGe facing the BPSG. Subsequently
remove the Si host wafer, and pattern the SiGe film
into islands. At this stage, the SiGe islands remain
strained because the island size is much larger than
the island thickness, and the BPSG is solid at room
temperature. Upon annealing above the glass tran-
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Fig. 1. Schematic of the SiGe island fabrication process.

sition temperature of BPSG, the glass layer flows,
and the islands relax. The goal is to obtain flat,
strain-free islands, on which one can grow epitax-
ial optoelectronic devices with SiGe or other sem-
iconductors of a similar lattice constant. Because
the islands and the devices on them are strain-free,
they can be of any thickness without acquiring
threading dislocations. Large islands are desired;
the larger each island is, the more devices it can
accommodate.

This paper models the annealing process. Fig.
2 illustrates the salient experimental observations
[2,3]. Before annealing, an island is flat and under
an inplane compressive strain (Fig. 2a). At the
annealing temperature, the island deforms elasti-
cally, dragging the glass layer underneath to creep
by viscous flow. The island remains bonded to the
glass. If the island is small, it expands in its plane
and remains flat (Fig. 2b). If the island is large, it
wrinkles (Fig. 2c). In the drawing, the lateral
length has been greatly contracted compared to the
vertical length. Upon further annealing, the
wrinkles may disappear when inplane relaxation
reaches the island center. Alternatively, the
wrinkles may become so severe that high tensile
stress arises in the island, leading to fracture.

Fig. 2. Annealing behaviors of the island. (a) The flat island
is initially biaxially strained. (b) Effect of just inplane expan-
sion. (c) Effect of wrinkling at the center and expansion at the
edges. In the drawings, the horizontal length is greatly contrac-
ted compared to the vertical length.

Everything else being equal, a critical island size
exists, below which the island relaxes without
wrinkle-fracture.

These experimental observations have inspired
several theoretical studies. Freund and Nix [5] for-
mulated a shear lag model, which accounted for
inplane expansion but neglected wrinkling. Sridhar
et al. [6] studied wrinkling but excluded inplane
expansion. Huang and Suo [7,8] and Sridhar et al.
[9] examined both inplane and out-of-plane dis-
placements during wrinkling. However, they
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assumed that the SiGe film was infinite, precluding
net inplane expansion.

Building on previous experimental and theoreti-
cal work, this paper aims to identify the critical
island size. We model the viscous layer by the
Reynolds lubrication theory, and the elastic island
by the von Karman nonlinear plate theory. Section
2 describes the partial differential equations, the
boundary conditions at the island edges, and the
numerical method. Section 3 describes simulations
of islands of different sizes. To place the numerical
results in context, we review the relevant theoreti-
cal results. Section 4 compares the time scales of
inplane expansion and of wrinkling, and predicts
the critical island size as a function of experimental
variables. Section 5 shows stresses developed in
the island and the viscous layer. This paper focuses
on the model, using experimental observations to
motivate several considerations. We leave quanti-
tative comparison between the model and the
experiment to a separate paper.

2. The model

The island relaxes in both the x and y directions.
However, to simplify the model, this paper will
consider only the relaxation in the x direction,
under the plane strain conditions. The film has
membrane displacement u(x,t) and deflection dis-
placement w(x,t) (Fig. 2c). Let H0 be the thickness
of the glass layer when it is flat. Once the island
wrinkles, dragging the glass underneath, the thick-
ness of the glass layer becomes nonuniform,
H(x,t) � H0 � w(x,t). The elastic island and the
viscous layer interact through the pressure p(x,t)
and the shear stress T(x,t) on the interface.

The glass layer is modeled as an incompressible
Newtonian fluid with viscosity h, creeping slowly
between two nearly parallel surfaces. The thickness
of the glass layer is small compared to the charac-
teristic horizontal length scale, such as the wrink-
ling wavelength. Consequently, the Reynolds lubri-
cation theory [10] adequately describes the BPSG
layer. This theory reduces the three spatial coordi-
nates in the Navier–Stokes equations to only one
spatial coordinate x. The lubrication theory has
been adapted to various situations over the last cen-

tury. Within the present context, the governing
equations are [7]
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∂x�H3
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Eqs. (1) and (2) relate the velocities, ∂w/∂t and
∂u/∂t, to the tractions, p and T.

To evolve these equations, we need to express
the tractions p and T in terms of the displacements
u and w. We model the island by the von Karman
nonlinear plate theory [11: pp. 57–60, 12: pp. 378–
380]. We take the flat island under biaxial inplane
strain e0 to be the reference state, in which u �
w � 0. The membrane force in the island relates

to the displacements as

N �
Ee0h

(1�v)
�

Eh
1�v2�∂u

∂x
�

1
2�∂w

∂x�2�, (3)

where h is the island thickness, E is Young’s
Modulus, and n is Poisson’s ratio. Under the
plane–strain conditions, force and moment balance
demand that

T �
∂N
∂x

, (4)

p � D
∂4w
∂x4�N

∂2w
∂x2 �T

∂w
∂x

, (5)

where D is the flexural rigidity of the elastic island,

D �
Eh3

12(1�v2)
.

The length of the island is L. The free edges of
the island allow the island to expand in its plane.
The boundary conditions at the two island edges,
x � ± L /2, are:

No membrane force,

Ee0h
(1�v)

�
Eh

1�v2�∂u
∂x

�
1
2�∂w

∂x�2� � 0.
(6)

No moment,
∂2w
∂x2 � 0. (7)

No shear force,
∂3w
∂x3 � 0. (8)



2936 J. Liang et al. / Acta Materialia 50 (2002) 2933–2944

No pressure, D
∂4w
∂x4 �T

∂w
∂x

� 0. (9)

Eqs. (1)–(5) complete the governing equations
for a strained elastic island on a viscous layer. At
a given time, assume u and w are known. Eqs. (3)–
(5) give p and T at the time, and eqs. (1) and (2)
update u and w for a small time step. The pro-
cedure is repeated for many time steps to evolve
the system over a long time.

When the island is fully relaxed, the displace-
ments become

w � constant, u � �(1 � v)e0x, (10)

and p � N � T � 0. This state satisfies all the
governing equations and the boundary conditions.
During relaxation, because shear stress is nonuni-
form, a net amount of glass under the island center
flows to the edges. Consequently, the island will
sink somewhat during relaxation.

In the numerical simulations, we use H0 �
200nm, h � 30nm, n � 0.3, e0 � �0.012, corre-

sponding to one set of experimental conditions in
[2,3]. Time is normalized by h/E. We set the initial
conditions to be

u(x,0) � 0, w(x,0) � A0cos(kx), (11)

where A0 is the initial amplitude, and k is the wav-
enumber. We set A0 /h � 0.001 and kh � 0.314.
This particular wavenumber is close to the waven-
umber at which the perturbation amplifies most
rapidly. The qualitative outcome is insensitive to
the initial amplitude. These matters will be further
discussed later.

We use an implicit finite difference scheme. At
each edge, to satisfy the boundary conditions, three
fictitious nodes are added, one for u and the other
two for w. The resulting system of nonlinear
algebraic equations is solved using the Newton
method. Convergence tests show that �x /h �
0.125 and �t � 0.1h /E are suitable.

3. Relaxation of islands of different sizes

This section presents the results of numerical
simulation and discusses them in light of available
theoretical models and experimental observations.

Islands of three sizes, L � 15, 30, 60 µm, are
simulated. We label them as small, intermediate,
and large islands. The significance will become
clear shortly.

3.1. A small island

Fig. 3 shows the numerical results for a small
island, L � 15µm. The membrane displacement u
at the edges quickly increases and then gradually
reaches the fully relaxed magnitude. In the plots
for deflection, w is normalized by h, and x by L/2.
Because L�h, the horizontal length appears greatly
contracted compared to the vertical length. The
deflection exhibits some roughness, with ampli-
tudes much less than h. Clearly, when the island
is small, inplane expansion rapidly travels from the
edges to the center of the island, so that wrinkles
have little time to grow. To conserve mass, the
edges bend downward initially, and then the entire
island sinks by 0.05 h. The initial edge bending-
down has been observed experimentally [2,3], but
overall island sinking has not been reported.

Remarkably, the inplane expansion suppresses
the wrinkles even when the island size is many
times the critical wavelength of the Euler buckling.
The latter is given by [6]

kch � ��12e0(1 � v). (12)

For this simulation, kch � 0.433, which is above
the wavenumber of the initial perturbation kh �
0.314. Consequently, the amplitude of the deflec-

tion grows before inplane relaxation reaches the
island center (Fig. 3). Even though the critical
wavelength, lc � 2p /kc � 0.436µm, is consider-
ably smaller than the island size, L � 15µm, the
inplane relaxation reaches the center fast enough to
prevent significant wrinkling. In experiments [1,2],
wrinkles were not appreciable for islands with
L � 30µm.

The island is said to have relaxed when the
membrane force at the center has dropped by more
than 99.9% of its initial value. The simulations
indicate that the time for the 15 µm film to reach
the relaxed state is 24901.5 h/E. Take h �
15GPa·s and E � 200GPa, the island is com-

pletely relaxed in about 30 min.
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Fig. 3. Simulation results for a 15 µm film. The membrane displacement and deflection distributions at different times.

As observed in experiments [2,3] and in the
above numerical simulation, small islands relax by
inplane expansion and remain nearly flat. Conse-
quently, for small islands, we can neglect deflec-
tion w in eqs. (1)–(5). At time zero, the island has
biaxial strain e0, the membrane force N �
Ee0h / (1�n), and the displacement u � 0. When

the island is completely relaxed, the membrane
force is N � 0, and the membrane displacement is
u � �(1 � n)e0x. The shear lag model [5] repro-
duced below describes the transient process from
the initial state to the relaxed state.

Fig. 4 illustrates the shear lag model. Force bal-
ance of a differential element of the island
requires that

T �
∂N
∂x

. (13)

The island is elastic, so that the membrane force N
relates to the mismatch strain and the displacement
gradient by Hooke’s law:

Fig. 4. The shear lag model. Force balance on an element of
the elastic island, and viscous shear flow in the glass layer.
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N �
Ee0h

(1�v)
�

Eh
(1�v2)

∂u
∂x

. (14)

The viscous layer has a linear velocity profile, so
that the shear stress relates to the velocity as

T �
h
H0

∂u
∂t

. (15)

Eqs. (13)–(15) can also be obtained from eqs. (2)–
(4) by setting p � 0 and w � 0. That is, the shear
lag model is a special case of the more general
model described in Section 2.

Combining eqs. (13)–(15), one finds that

∂u
∂t

� �
∂2u
∂x2, (16)

where

� �
EH0h

(1�v2)h
.

Eq. (16) is identical to the diffusion equation once
� is identified as the diffusivity. The boundary
conditions are

N � 0 at x � ± L / 2, (17)

Subject to the initial and the boundary con-
ditions, the displacement field evolves as [5]

u(x,t) �

�e0(1 � v)[x� ��
n � 0

Ansin(knx)exp(��k2
nt)],

(18)

where

kn �
(2n � 1)p

L
, (19)

An � (�1)n
L

p2(n � 1/2)2. (20)

When t→�, eq. (18) recovers the relaxed state
u � �(1 � n)e0x. Also plotted in Fig. 3 is the
membrane displacement computed from the shear
lag model, eq. (18), which is indistinguishable
from the numerical results.

3.2. An intermediate island

Fig. 5 plots the displacements for an intermedi-
ate island, L � 30µm. The shear lag prediction of
the membrane displacement still agrees reasonably
with that obtained from the numerical simulations.
Note that, for the w plots, the scales in Figs. 3 and
5 are different. Now the island is large enough so
that wrinkles are manifest on the order h, but per-
sist only for a period of time.

Fig. 6 shows the membrane force and shear
stress distributions for the same island, L �
30µm. The stresses are normalized by the com-

pressive stress before relaxation. The membrane
force decreases with time, is highest at the center,
and approaches zero once fully relaxed. The mem-
brane force vanishes at the two edges at all time
due to the boundary conditions. Observe that
before inplane expansion from the island edges
reaches the island center, the membrane force has
already been partially relaxed by wrinkling. The
numerical result is quite different from that of the
shear lag model. The shear stress distribution is
anti-symmetric about the island center. At each
point, the glass flows in the same direction as the
shear stress. The gradient of the shear stress signi-
fies the vertical velocity at a particular point.

The island at t � 160000h /E has a depression
at the center, comparable to one long and flat wave
(Fig. 5). The amplitude of this wave is about 20
nm, but occurs over a distance of about 15 µm. The
time to reach the relaxed state (i.e., below 0.1% the
initial membrane force) is about 105604.5 η/E or
132 min.

3.3. A large island

A large island (L � 60µm) simulation is shown
in Fig. 7. The membrane displacement u has
minute undulations at the island center. A large
part of the island now wrinkles. The shear lag
model still reasonably describes the evolution trend
of the membrane displacement, although the
wrinkled island does fall behind in its inplane
expansion compared with that predicted by the
shear lag model. In what follows, we will mainly
consider the characteristics of the wrinkling pro-
cess.
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Fig. 5. Simulation results for a 30 µm film. The membrane displacement and deflection distributions at different times. Dashed lines
in the displacement plots are from the shear lag model.

Huang and Suo [7] have carried out a linear per-
turbation analysis for an infinite film. Starting with
a flat biaxially strained state, u � w � 0, N �
Ee0h / (1�n), and p � T � 0, both velocities ∂u/∂t

and ∂w/∂t are zero. The film does not evolve. How-
ever, this equilibrium state is unstable. Given a
small perturbation at time zero, w � A0sin(kx), the
film will evolve to reduce the strain energy. The
linear perturbation analysis predicts that amplitude
grows exponentially with time, A(t) � A0exp(st).
The parameter s measures the growth rate. When
the wavenumber k is small, matter has to flow over
a long distance to affect wrinkling, so that s is
small. When the wavenumber k exceeds the Euler
critical wavenumber kc, the bending raises too
much elastic energy and the deflection amplitude
decays, so that s becomes negative. Consequently,
s reaches a positive, maximum value sm at an inter-
mediate wavenumber km. Among perturbations of
all wavenumbers, the perturbation of wavenumber
km will grow most rapidly. The linear perturbation
analysis gives kmh � 0.353 for the numerical
values used in this paper. In our numerical simul-

ation, we have used wavenumber kh � 0.314,
which is close to kmh.

For an infinite film, if the wavenumber of the
perturbation is below the Euler critical waven-
umber, k � kc, the film will evolve to a kinetically
constrained equilibrium state [6,7]. The viscous
layer stops flowing and the tractions vanish (i.e.,
p � T � 0); the film remains in a wrinkled state.
The amplitude at the constrained equilibrium state
takes the form

Aeq � h�1
3��kc

k �2

�1�. (21)

For this work, Aeq � 12.3nm. Wrinkles observed
in the experiments may correspond to one of these
constrained equilibrium states.

Fig. 8 plots the numerical results of the nor-
malized amplitude at the island center versus the
normalized time. Also plotted are the predictions
according to the constrained equilibrium state
(CE), and according to the linear perturbation
analysis (LP). For the 15 µm island, the simulation
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Fig. 6. Simulation results for a 30 µm film. The membrane force and shear stress distributions at different times. Dashed lines in
the membrane force and shear stress plots are from the shear lag model.

matches well to LP in short times. The amplitude
increases somewhat and then decreases when the
inplane expansion reaches the island center. The
wrinkles die out before reaching CE. For the 30
µm island, the simulation also matches well with
LP initially, and attains CE after some time. How-
ever, after about 12000 η/E, the amplitude com-
mences to decay. For the 60 µm island, CE persists
for a much longer time. When the island is large
enough for its center to attain CE, the time to get
to the state is independent of the island size.

4. Critical island size

Both previous experiments [2,3] and the present
simulations show that, everything else being equal,
a critical island size Lc exists, below which the

island expands in its plane without significant
wrinkling. Severe wrinkles cause tensile stress and
fracture in the island and should be avoided during
annealing. This section determines the critical
island size as a function of experimental variables.

If inplane expansion prevails, the shear lag
model gives a time scale:

tE �
L2

p2�
�

1�v2

p2 �hE�� L2

H0h
�. (22)

Here we use the relaxation time of the first term
in the series in eq. (18). This expression has been
obtained in [5]. As pointed out before, the relax-
ation time scales with η/E. A large island takes a
long time to relax, as expected. A thin island
decreases the stiffness of the system, and a thin
glass layer reduces the flow rate for a given shear
stress. Both effects prolong the relaxation time.
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Fig. 7. Simulation results for a 60 µm film. The membrane displacement and deflection distributions at different times. Dashed lines
in the displacement plots are from the shear lag model.

Fig. 8. Evolution of wrinkle amplitude. LP: linear pertur-
bation. CE: constrained equilibrium.

Before the inplane expansion arrives, the island
center wrinkles. As the numerical simulations
show clearly, the wrinkling amplitude obeys the
linear perturbation analysis, A � A0exp(st), up to
the time the island is nearly at CE. To be conserva-
tive with over prediction of the critical island size,

we allow wrinkles to amplify in the fastest mode,
so that A � A0exp(smt). Dimensional consider-
ations demand that

sm �
f

1�v2�E
h�. (23)

The dimensionless number f is a function of two
variables, h/H and e0(1 � n). The function is con-
tained in Ref. [8], which models the glass layer
exactly without using the lubrication approxi-
mation. For example,

f �
1
12

[�4e0(1 � v)]3/2

when h /H→0, and

f �
16
9 ��e0(1 � v)

H
h�3

when h /H→�. For the wrinkles to amplify from
A0 to A, the time needed is

tW �
1
sm

ln�A
A0
� �

(1�v2)
f
h
E

ln�A
A0
�. (24)

The wrinkling time scale is also proportional to
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η/E. As expected, before the inplane expansion
arrives, the wrinkling time is independent of the
island size L. To determine tW, we need to know
A0, and to declare what amplitude A constitutes a
“severe” wrinkle. Fortunately, both A and A0

appear in the logarithmic function, so that tW is
insensitive to the precise choice of A and A0.

We determine the critical island size, Lc, by set-
ting tE � tW, so that

Lc � p�H0h
f

ln�A
A0
� (25)

Because both tE and tW scale with η/E, the critical
island size is independent of η/E. If one raises the
annealing temperature and therefore decreases the
viscosity, both the inplane expansion and wrinkling
accelerate, but Lc remains unchanged. A large
island will wrinkle and fracture whether it lies on a
low viscosity polymer or on a high viscosity glass.
Analytical results are available at two limits:

Lc � p�12H0hln�A
A0
�

[�4e0(1 � v)]�3/4,
h
H

→ 0

(26)

Lc �
3p
4

h2

H0
�ln�A

A0
�[�e0(1 � v)]�3/2,

h
H

→ �

(27)

Fig. 9 displays eq. (25), plotting Lc/H0 as a func-
tion of h/H0 at several values of e0. We have set
ln(A /A0) � 5 and n � 0.3 in plotting Fig. 9. For
a given set of experimental conditions, the exper-
imentally observed Lc�30µm [3], and the value
read from Fig. 9 is Lc � 20µm. This agreement is
gratifying, given how vague we are in declaring an
island is critical in both the model and the experi-
mental observation. In practice, Fig. 9 is perhaps
more useful as an indication for trends. To fabri-
cate large islands (Lc large), one should decrease
e0 and increase h, if H0 is held constant. For a given
e0, a proportional increase in H0 and h will pro-
portionally increase Lc, but keep relaxation time
unchanged when L � Lc. Of course, the island

Fig. 9. The critical island size as a function of experimental
variables.

thickness h is limited below a critical value to
avoid threading dislocations. In the limit
h /H0→0, when H0 increases, tE shortens but tW
remains unchanged, so that Lc increases. We cau-
tion that the conclusion is based on the shear lag
model, which breaks down when the glass layer is
too thick.

5. Stresses in the island and the viscous layer

5.1. Wrinkle-induced tension in the island

Cracks have been observed in the wrinkled
islands [3]. The inplane stress at the top convex
surface of the wrinkles has two contributions, one
from the membrane strain and another from the
bending curvature. The sum is

s(x,t) �
Ee0
1�v

�
E

1�v2�∂u
∂x

�
1
2�∂w

∂x�2� (28)

�
E

1�v2

∂2w
∂x2

h
2
.

We will evaluate the stress at the island center,
denoted as s∗. For short times, the stress is given
by the linear perturbation analysis:
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s∗ �
Ee0
1�v

�
Ekh

1�v2

B(t)
h

�
E(kh)2

2(1�v2)
A(t)

h
. (29)

where A(t) and B(t) are the amplitudes of w and u,
respectively. At the constrained equilibrium state,
the stress is

s∗ �
E(kh)2

2(1�v2)��1
3��kc

k �2

�1��
1
6�. (30)

The stress becomes tensile when the perturbation
wavenumber is just slightly below the Euler critical
buckling wavenumber, k /kc � �12/13.

Fig. 10 shows s∗ as a function of time for
islands of four sizes obtained from numerical simu-
lations. As expected, the 15 µm island never has
tensile stress in the entire process of relaxation. For
the intermediate and large islands, the stress is
initially compressive, but becomes tensile as the
wrinkles amplify. This tensile stress builds up and
reaches a maximum value. Cracks may nucleate
anytime during the buildup of the tensile stress,
depending on flaws in the islands. As the wrinkles
begin to subside, the tensile stress decreases and
turns slightly compressive before vanishing.
Knowing the magnitude of the stress is insufficient
to predict whether the island will crack. A fracture
mechanics analysis similar to that for other thin
film structures is needed [13]. We will pursue this
in a later study.

Fig. 10. Normal stress at the island center. LP: linear pertur-
bation. CE: constrained equilibrium.

5.2. Hydrostatic stress in the glass layer

During annealing, the glass underneath the
growing wrinkles will experience negative hydro-
static pressure, which may be significant enough to
cause cavitation and debonding at the island-liquid
interface, although this phenomenon has not been
observed in experiments. Fig. 11 is a plot of the
hydrostatic pressure at the island center. As the
wrinkles increase in amplitude, a negative hydro-
static pressure of about 35 MPa builds up in the
largest islands. For large islands, the pressure
reduces as the islands approaches the constrained
equilibrium state.

6. Concluding remarks

This paper models the co-evolution of inplane
expansion and wrinkling. Inplane expansion pre-
vails in small islands. Relaxation quickly propa-
gates from the island edges to the island center,
and suppresses wrinkling. As for the larger islands,
inplane expansion will still occur at island edges
and eventually reach the center; however, by the
time the inplane expansion arrives, the middle part
of the island has already wrinkled substantially.
The larger the island, the more time the wrinkles
can amplify. Thus, a critical island size exists

Fig. 11. The negative pressure in the glass layer caused by
wrinkling.
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below which inplane expansion prevails over
wrinkling. This critical size depends on the misfit
strain, the island thickness, and the glass layer
thickness; however, it does not depend on glass
viscosity. When the island wrinkles, we also show
the tensile stress buildup in the island and the nega-
tive pressure in the glass. They may be used to
assess the likelihood for wrinkle-induced fracture,
debonding, and cavitation.
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