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Calculation of band alignments and quantum confinement effects in zero-
and one-dimensional pseudomorphic structures
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The strain field distributions and band lineups of zero-dimensional and one-dimensional strained pseudo-
morphic semiconductor particles inside a three-dimensional matrix of another semiconductor have been stud-
ied. The resulting strain in the particle and the matrix leads to band alignments considerably different from that
in the conventional two-dimensional~2D! pseudomorphic growth case. The models are first applied to an ideal
spherical and cylindrical Si12xGex particle in a large Si matrix. In contrast to the 2D case, the band alignments
for both structures are predicted to be strongly type II, where the conduction-band edge and the valence-band
edge of the Si matrix are both significantly lower than those in the Si12xGex inclusion, respectively. Band
lineups and the lowest electron–heavy-hole transition energies of a pseudomorphic V-groove Si12xGex quan-
tum wire inside a large Si matrix have been calculated numerically for different size structures. The photolu-
minescence energies of a large Si12xGex V-groove structure on Si will be lower than those of conventional 2D
strained Si12xGex for similar Ge contents.@S0163-1829~97!04528-1#
er

e
on

ic
ll
o
ex

in
an
ix

om
o
-
st

ol
er

l
e.

ch
fo

-
-
m

ally
ac-
a
-

y in

the
ses
he
will
on-

by

r of
ed

ing
ro-
ed
-

a

I. INTRODUCTION

There has recently been an increasing interest in z
dimensional~0D! quantum dots and one-dimensional~1D!
quantum wires consisting of a pseudomorphically strain
epitaxial semiconductor surrounded by a matrix of a sec
semiconductor. Such material systems include Si12xGex on
Si ~Refs. 1 and 2! and InxGa12xAs on GaAs.3–6 While the
effect of uniform strain in biaxially strained pseudomorph
two-dimensional~2D! layers on planar substrates is we
known,7,8 the effect of strain on band alignments in pseud
morphic 0D and 1D particles generally has not been
plored.

In this paper we first calculate the spatially varying stra
fields and resulting band alignments for ideal spherical
cylindrical pseudomorphic inclusions in an infinite matr
and apply the results to Si12xGex in Si assuming that the
materials are isotropic. The results are very different fr
those in a uniform biaxially strained 2D layer and the type
the band offset~type I vs type II! can be changed. The finite
element method is then used to investigate the strain di
bution in and around a single V-groove Si12xGex quantum
wire buried inside a large Si matrix. The electron and h
energy levels are obtained in order to compare with exp
mental photoluminescence values.

In the following section we will first discuss analytica
strain distributions for ideal symmetry structures, i.
pseudomorphic 0D spheres and 1D cylinders made up
isotropic materials. In Sec. III we will present the approa
to calculate band alignments from the strain distributions
lowing the model-solid approachof Van de Walle and
Martin7,8 and Pollak and Cardona.9 The results for pseudo
morphic Si12xGex inside a Si matrix using the analytic mod
els are given in Sec. IV. The analytic results are also co
560163-1829/97/56~4!/1973~8!/$10.00
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pared with results where the strain is calculated numeric
using the finite-element approach taking anisotropies into
count. Numerical results are derived in Sec. V for
V-groove Si12xGex quantum wire, considering the aniso
tropic elastic properties of Si12xGex material. A perturbation
approach is used to get the quantum confinement energ
the small V grooves.

II. STRAIN DISTRIBUTION OF IDEAL STRUCTURES

In order to determine the band alignments of a system,
strain distribution in the space is required. For the purpo
of an analytical calculation it is assumed at first that t
elastic properties of Si and Ge are isotropic. The results
be compared with the anisotropic case later. We also c
sider only the ideal pseudomorphic interface.

A. Spheres

Conceptually, a pseudomorphic 0D dot can be formed
replacing atoms in a sphere of radiusR in an infinite matrix
of a semiconductor with atoms of a second semiconducto
different lattice constant. If the lattice constant of the relax
inclusion ai is larger ~smaller! than that of the matrixam ,
both materials are under compressive~tensile! stress. This
was modeled using continuum linear elastic theory assum
no defects or plastic deformation. The problem of an isot
pic spherical inclusion inside an isotropic matrix was solv
by Eshelby10,11 to the first order of the lattice mismatch be
tween the inclusion and the matrixem5ai /am21. In the
inclusion, only a uniform hydrostatic strain exists, with
value of

« in5emS 1g21D , ~1a!
1973 © 1997 The American Physical Society
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whereg5112Km(122nm)/Ki(11nm), Ki andKm repre-
sent the bulk modulus of the inclusion and the matrix, a
nm is the Poisson ratio of the matrix. In the matrix, on
‘‘normal’’ ~no shear! strains exist, in both the radial an
tangential directions, which are given by

« r522
em
g SRr D

3

, ~1b!

«t5
em
g SRr D

3

. ~1c!

The strain in the matrix has no hydrostatic component;
magnitude is independent of the absolute size of the sph
but only related tor /R, the ratio of the distance from th
center and the radius of the sphere. Note that the result
tains only to isolated spheres, not to an interaction array
spheres.

The strain components« r and«t are plotted in Fig. 1 for
a Si0.8Ge0.2 sphere inside an infinite Si matrix. The uniform
distributed hydrostatic strain inside the sphere is23.4
31023 and in the matrix around the sphere the radial a
tangential strain components are29.431023 and 4.7
31023, respectively. In real materials, the size of the mat
is finite. In the case of a finite spherical matrix, the stra
field also may be found analytically.12 Figure 2 gives the
value of the hydrostatic strain inside the Si0.8Ge0.2 inclusion
as a function of the ratio between the radius of the matrix
the inclusionRSi /RSiGe. The strain inside SiGe decreases
the size of the matrix decreases. But atRSi /RSiGe53, the
strain inside the sphere is already 97% of the value of
infinite model. Therefore, the magnitude of strain distrib
tion can be estimated using an infinite matrix as long as
radius of the matrixRSi is several times larger than the radi
of the SiGe sphereRSiGe.

B. Cylinders

To model a 1D structure, an infinitely long~in the z di-
rection! cylindrical-shaped inclusion with radiusR is in-

FIG. 1. Strain distribution vsr /R ratio of the distance over the
radius of the sphere for the structure of a Si0.8Ge0.2 sphere inside a
Si matrix.«t and« r are the tangential and radial strain componen
The strain inside SiGe is uniform and hydrostatic.
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serted in an infinite matrix of smaller~larger! lattice con-
stant. For a pseudomorphic structure, the axial strain in
matrix is

«zz50. ~2a!

The radial and tangential strain components in the ma
are12

« r52
em
g8 SRr D

2

, ~2b!

«t5
em
g8 SRr D

2

~2c!

and in the cylinder

«zz'2em , ~2d!

« r5«t5emS 1g8
21D , ~2e!

with

g85
1

11n i
1
Km

Ki

122nm
11nm

.

For a Si0.8Ge0.2 cylinder inside a Si matrix, the strain com
ponents are plotted in Fig. 3. The strain« r and«t inside the
cylinder would be21.0131023 with a lattice mismatch of
28.131023 in the z direction. In the matrix« r and«t are
27.131023 and 7.131023, respectively, at the boundary.

III. CALCULATION OF BAND ALIGNMENTS
FOR STRAIN DISTRIBUTION

To determine the effect of strain on band alignments,
first define thexyz axis for our analysis in the usual@100#,
@010#, and@001# crystal directions. The procedure for obtai
ing the lineups follows themodel-solid approachof Van de
Walle and Martin.7,8 In this theory the average energy o
highest valence bands at theG point Ev,av

0 is set on an abso
lute scale for bulk relaxed material. The effect of spin-or

.

FIG. 2. Strain inside a Si0.8Ge0.2 sphere as a function o
RSi /RSi0.8Ge0.2

, the ratio of the radius of the Si matrix over the SiG
sphere. The infinite matrix approximation is good forRSi several
times larger thanRSiGe.
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56 1975CALCULATION OF BAND ALIGNMENTS AND QUANTUM . . .
coupling~Hso, assumed to be independent of strain! and the
effects of strain (H«) are then added to this starting point
get the position of an individual valence-band maximum:

Ev5Ev,av
0 1^J,mJuHso1H«uJ,mJ&. ~3!

The sixfold degeneracy of the valence-band maximum~as-
sumed at theG point! in bulk material is split by the spin
orbit interaction into a fourfold multiplet~J53/2, mJ5
63/2,61/2, andHso51D0/3! and a twofold multiplet~J
51/2,mJ561/2, andHso522D0/3!, whereD0 is the spin-
orbit splitting. The orbital-strain HamiltonianH« for a given
band at theG point is9

H«5av~«xx1«yy1«zz!23b@~Lx
22 1

3L
2!«xx1c.p.#

2)d@~LxLy1LyLx!«xy1c.p.#, ~4!

where the parameterav represents the hydrostatic deform
tion potential for the valence band. The quantitiesb andd
are uniaxial-deformation potentials,L is the angular momen
tum operator, and c.p. denotes cyclic permutation. Note
strain might shift the average valence-band position~Ev,av

0 is
for unstrained material! and lift the degeneracy betwee
u3/2,63/2& and u3/2,61/2& states.

For the conduction band, the absolute energy of the m
mum of conduction-band valleyj of typeD, L, or G ~repre-

FIG. 3. Strain distribution vsr /R ratio of the distance over the
radius of the cylinder for the structure of a Si0.8Ge0.2 cylinder inside
a Si matrix.et and e r are the tangential and radial strain comp
nents in the polar plan.ezz is the axial strain.
at

i-

sented bya!, Ec,a
j , is determined by adding the shift of th

minimum due to strainDEc,a
j to the position of the

conduction-band minimum in bulk materialEa,av
0 , where

Ea,av
0 5Eg,a

0 1
D0

3
1Ev,av

0 ~5!

and

Ec,a
j 5DEc,a

j 1Ea,av
0 . ~6!

Eg,a
0 is the distance from the valence-band maximum to

minimum of the conduction band of typea in relaxed bulk
material.DEc,a

j can be written as8

DEc,a
j 5@Jd

a1J1Ju
aâj âj #:«J, ~7!

where lI is the unit tensor,âj is the unit vector to the valley
j , «J is the strain tensor, andJd

a andJu
a are the deformation

potentials for conduction banda. The quantityJd
a1 1

3Ju
a ,

sometimes also denoted asac
a , is the hydrostatic deforma

tion potential for the conduction banda. The degeneracies o
conduction-band minima not atG ~e.g.,D andL! are usually
split by nonhydrostatic strain; conduction-band minima aG
are only subject to hydrostatic strain shifts@the second term
on the right-hand side in Eq.~7! vanishes#.

IV. IDEAL SYMMETRIC STRUCTURES OF Si 12xGex /Si

We now apply these formulas to the case of a sin
Si12xGex sphere and cylinder inside a Si matrix. The para
eters used are listed in Table I. All were linearly interpolat
for the alloys exceptEv,av

0 andEg,a
0 . In an alloyA12xBx with

lattice constantsaA and aB mismatched,Ev,av
0 should be

given by8

Ev,av
0 ~x!5xEv,av,B

0 1~12x!Ev,av,A
0

13x~12x!@2av
B1av

A#
aB2aA
aAB

, ~8!

where the alloy lattice constantaAB5aA(12x)1aBx. The
band gaps of the bulk relaxed alloys were fit with a quadra
as

Eg,a
0 ~x!5~12x!Eg,a,A

0 1xEg,a,B
0 2cax~12x!, ~9!

wherea refers to the type of conduction-band minimum a
ca is a ‘‘bowing’’ parameter.
e

TABLE I. Lattice constanta ~in angstroms!, elastic constantsc11, c12, and c44 ~in 1012 dyn/cm2!,
spin-orbit splittingD0 , average valence bandEv,av

0 , band gapsEg,D
0 , Eg,L

0 , and Eg,G
0 , and deformation

potentialsav , b, d, Ju
D , Ju

L , Jd
D , Jd

L , andJd
G ~all in eV! used in this work~Refs. 7 and 8 except wher

noted!.

a

av

c11

b

c12

d

c44

Ju
D

Eg,G
0

Ju
L

Eg,D
0

Jd
D

Eg,L
0

Jd
L

D0

Jd
G

Ev,av
0

cL

cG

cD

Si 5.43 1.675 0.650 0.801 3.37 1.17 2.06 0.0427.03
2.46 22.35 25.32 9.16 16.14 1.127 26.04 1.98 0.0a 0.206a

Ge 5.65 1.315 0.494 0.684 0.89 0.96 0.74 0.326.35
1.24 22.55 25.50 9.42 15.13 20.59 26.58 28.24 0.0a 0.206a

aReference 19.
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A. Si12xGex quantum wires and quantum dots

For the case of a Si0.8Ge0.2 sphere in a Si matrix, Fig. 4~a!
gives the band extrema positions as a function ofr /R in the
@100# real-space direction, which has the lowest conduct
band. ~Note that the@100#, @010#, and @001# directions are
equivalent in this spherical inclusion case.! The energies are
relative to the top of the valence-band edge in relaxed
material. OnlyD conduction bands are plotted asL bands lie
higher in energy for all Ge concentrations~unlike the relaxed
alloy!, assuming theL band gap in bulk Si of 2.06 eV. Insid
the sphere, the band edges of SiGe are uniform due to
uniform strain distribution. As the stress in the sphere
hydrostatic, the conduction-band and the valence-band e
remain degenerate except for the spin-orbit splitting of
valence band, although both bands are dropped from t
relaxed positions. In the Si matrix, the fourfold-degener
conduction bandD4 is lifted up by 0.045 eV and the twofold
degenerate conduction bandD2 ~valleys in the @100# and
@1̄00# k-space directions for the@100# real-space direction!
drops by 0.09 eV to form the conduction-band minimum.
there is no hydrostatic strain in the matrix, the weighted
erage of these bands does not change. At the boundary
conduction-band edge in the matrix is 0.15 eV lower th
that inside the sphere and the valence-band edge in
sphere lies 0.10 eV higher than that outside the sphere.
though it is well known that for biaxially strained plana

FIG. 4. ~a! Band positions vsr /R in the @100# direction for the
0D system: a Si0.8Ge0.2 sphere inside a Si matrix. All energies a
referred to the top of the valence band in Si bulk material. Only
D conduction band is plotted here.~b! Energy bands vs real-spac
direction in the matrix atr5R.
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Si12xGex on Si~100! substrates the conduction-band offset
negligibly small with a large valence-band offset,7,13 in this
case of a commensurately strained sphere the predicted
lineup is clearly type II, with significant offset in both band
For example, forx50.2, in the 2D case the conduction-ban
offset calculated by the same approach is 0.01 eV, less
that caused by the uncertainty in parameters~0.02 eV!.

As the direction of stress affects the band alignment
the conduction bands not atG, the energy bands of the matri
vary with direction and are plotted in Fig. 4~b! at the spheri-
cal boundaryr5R, from @001# to @111#, from @111# to @110#,
and from @110# to @010# real-space directions. In the@111#
direction the conduction bands remain degenerate in t
bulk positions and are 0.09 eV higher than the minima in
@100#-like directions, but are still lower than those inside t
sphere~which are independent of real-space direction b
cause of the hydrostatic strain inside the sphere!. The valence
bands change comparatively less with orientation compa
to the conduction bands. The valence-band maximum in
matrix is highest in the@111# real-space direction~0.02 eV
more than in the@100# direction!, so that the conduction
band and valence-band extrema in the matrix lie in differ
positions in real space. The band gap of the matrix ha
minimum at the interface in the@100# direction with a value
of 1.03 eV, which is less than that inside the sphere~1.08
eV!. The band gap reaches a maximum in the@111# direction
in the matrix and is 0.07 eV larger than that in the@100#
direction.

Qualitatively similar results are obtained for a lon
Si0.8Ge0.2 cylinder ~with its axis in the@001# direction! inside
a Si matrix. Figure 5~a! is the band alignment in the@100#
real-space direction. Inside the cylinder the energy bands
spatially uniform, but split due to the nonhydrostatic stra
The two conduction-band minima in the@100# k-space direc-
tions are 0.06 eV lower in energy than the four in the@010#
and@001# k-space directions. The band alignment is type
with a 0.08-eV conduction-band offset and a 0.14-
valence-band offset. The energies of the bands in the ma
vary in the different directions in the polar plane in re
space, which is given in Fig. 5~b!. The six conduction-band
minima split into three nondegenerate pairs; bands are o
degenerate in the@110# direction. The@100# and@010# direc-
tions in real space have the lowest conduction bands~@100#
and@010# directions ink space, respectively!, which are 0.06
eV lower than that of the@110# direction at the interfacer
5R. The conduction-band edges in the matrix in all re
space directions are lower than that inside the cylind
Changes for the valence bands in different directions in
matrix are small. The valence-band offset between the@100#
and @110# directions in the matrix is 0.02 eV.

A similar analysis was performed for a Si0.8Ge0.2 cylinder
with its axis in the@011# direction @Fig. 6~a!#. „@011# and
@01̄1# are the directions of straight lines usually defined
lithography on~100!-oriented wafers.… Again the bands are
spatially uniform inside the cylinder, but four conductio
band minima ink space in the plane of the cylinder lie lowe
than the other two minima~in the@100# direction! rather than
higher. In the matrix the relative alignment of the s
conduction-band minimum is also different, as shown in F
6~a!. The overall alignment between the inclusion~cylinder!
and matrix is again type II, with a 0.11-eV conduction-ba

e
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56 1977CALCULATION OF BAND ALIGNMENTS AND QUANTUM . . .
offset and a 0.14-eV valence-band offset along@11̄1#. The
largest energy offset between the cylinder and matrix
different directions are 0.06 eV for the conduction band a
0.01 eV for the valence band, as plotted in Fig. 6~b!.

To summarize these results of band extrema and offs
Fig. 7 shows the conduction-band and valence-band p
tions in the Si12xGex inclusion and in the Si matrix~at r
5R in the @100# real-space direction! as a function of Ge
concentration in the sphere and cylinder~the z axis in the
@001# direction! structures. Also shown for comparison a
the band edges of a conventional 2D biaxially strain
Si12xGex layer on a Si~100! substrate~as in Ref. 8! calcu-
lated with the parameters in Table I~The @100# real-space
direction represents the conduction-band minimum in the
matrix atr5R. Because of the uniform strain in the SiGe
all the three structures, there is no dependence of
conduction-band minimum on the real-space direction in
SiGe in all three cases.! For both 1D and 0D cases, theD
conduction-band minimum decreases in the matrix and
creases in the inclusion, while the valence-band edge
creases in the inclusion faster than in the matrix as the
concentration increases, in both cases leading to a typ
band alignment. The valence-band maximum in the ma
lies marginally higher in other directions in the 0D and 1
particles as discussed earlier, but not enough to affect
sign of the band offset. For a pure Ge pseudomorphic p

FIG. 5. ~a! Band alignments vsr /R in the@100# direction for the
1D system: a Si0.8Ge0.2 cylinder inside a Si matrix. The direction o
thez axis is in the@001# crystal direction. All energies are plotted a
in Fig. 4. ~b! Energy bands vs the real-space direction in the ma
at r5R.
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ticle inside a Si matrix, the conduction-band offsets are 0
and 0.51 eV and the valence-band offsets are 0.41 and
eV in the@100# real-space direction for the 0D and 1D case
respectively. In the conventional 2D case the valence ban
higher in the SiGe, as in the 0D and 1D cases. The lack

x

FIG. 6. ~a! Band alignments in the@11̄1# real space direction for
a Si0.8Ge0.2 cylinder with thez axis in the@011# direction. All en-
ergies are plotted as in Fig. 4.~b! Energy bands vs the real-spac
direction in the matrix atr5R.

FIG. 7. Valence- and conduction-band edges in a Si12xGex in-
clusion and in the Si matrix as a function of the Ge concentrat
for the 1D cylinder~the axis is in the@001# direction! and 0D sphere
structures at the@100# real-space boundary between the matrix a
inclusion (r5R). The conduction and valence band of a conve
tional 2D Si12xGex strained layer on a Si~100! substrate are also
shown.
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1978 56MIN YANG, J. C. STURM, AND JEAN PREVOST
dependence of the Si conduction band on the Ge conce
tion in the 2D case leads to a much smaller conduction-b
offset in the 2D case compared to the 0D and 1D ca
however. While the exact band distribution will depend
the exact shape of 0D and 1D inclusions, the model sph
and cylinder systems chosen here clearly show that care
be taken when directly relating photoluminescence ener
to the band gap of the inclusions, as the band type in th
structures can be strongly type II.

B. Anisotropy and finite-element modeling

In the above calculations we assumed that the ela
properties of the semiconductors are isotropic, i.e., we u
only the bulk modulusK5(C1112C12)/3 and Poisson’s ra
tio n5C12/(C111C12) so that the strain was only a functio
of r /R. But actual cubic crystal materials are anisotrop
i.e.,c112c1222c44Þ0. We then used finite-element analys
to calculate the strain in the anisotropic case using a c
mercially available program.14 The results indicate that ther
is only a small change of the strain and energy levels fr
the isotropic results. The energy bands of 1D and
Si0.8Ge0.2/Si structures shift less than 0.01 eV, which ind
cates that the isotropic elasticity assumption is good to
order. The results of the strain distribution cannot be sim
added to the plots in Figs. 1 and 2 because in the anisotr
structures strain cannot be reduced to two normal com
nents: tangential («t) and radial (« r).

V. Si12xGex /Si V-GROOVE STRUCTURES

Recently, the growth and photoluminescence meas
ments of Si12xGex quantum wires on a Si substrate wi
etched V grooves have been reported.15,16Strain distributions
of a single wire17 and an array18 of wires were calculated
assuming that the materials are isotropic. Reference 18
analytically calculated the effect of strain on the overall ba
gap in wires, but the effect on the individual band edges
electron and hole confinement energies were not reporte
this work we numerically model the strain in quantum-w
structures, fully considering anisotropic material properti
and present effects individually on both conduction and
lence bands. We then calculate quantum confinement e
gies of carriers in their wires as the wire dimensions beco
small and relate the results to photoluminescence exp
ments.

We model the V-groove structure as a long wire with
triangular cross section buried in an infinite matrix as sho
in Fig. 8. After the Si is etched, a sharp corner between
$111% planes is formed. Si12xGex is selectively grown on the
bottom of the V groove and capped by a Si epitaxial lay
The growth direction is@100# and the axis of the quantum
wire is in the@011# direction forming an approximately tri
angular cross section with its width& larger than its depth
We assume that the interface is free from any defects
dislocations. The alloy segregation effect, which might ca
the alloy to be nonuniform throughout the triangle, is a
neglected. Using finite-element analysis,14 we calculated the
strain distribution, which relies only on the shape of the cr
section. Once the strain distribution is known, the ba
alignments are derived from the same methods discusse
fore. The conduction-band minimum is the twofoldD2 band
ra-
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~in the @100# k-space direction! lying in Si12xGex near the
bottom of the V groove~point A! and the valence-band
maximum is the heavy-hole band in the Si12xGex at the cor-
ner of the top interface~pointC!. Band lineups of the points
along the SiGe/Si interface and along the wire cross-sec
bisector are shown in Fig. 9. The reference energy poin
the valence-band edge in Si far from the Si12xGex interface.
Far from SiGe, the conduction-band edge in Si is 1.17 eV.
point A in SiGe, theD2 conduction band is 0.07 eV lowe
than the lowest conduction-band point in Si, which occurs
theD2 band at pointF. At pointC, the valence-band edge i

FIG. 8. Cross section of a SiGe epitaxial layer with a Si cap
a V-groove Si~100! substrate.

FIG. 9. D conduction bands and valence bands along~a! the
Si/Si0.8Ge0.2 interface of the V-groove structure and~b! the vertical
wire cross-section bisector. In~a! the solid lines are for points in-
side SiGe and the dashed lines are for points inside Si.
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56 1979CALCULATION OF BAND ALIGNMENTS AND QUANTUM . . .
the Si12xGex is 0.13 eV higher than pointE in Si. A three-
dimensional map of theD2 conduction band and the valenc
band edge for Si0.8Ge0.2 in Si are plotted in Figs. 10 and 11
respectively. In SiGe theD2 bands are lower and th
valence-band edges are higher than Si. Note that, as in
case of a symmetric cylinder, holes are confined to Si
However, while in the symmetric cylinder case th
conduction-band minimum is in the Si matrix, for th
V-groove structure the lower conduction band is in SiGe~at
point A!. This results from the shape of the structure, wh
causes a large nonhydrostatic strain at pointA that splits
conduction bands more strongly in the SiGe than in any
the other cases discussed in this paper. The result is the
one in which electrons are strongly confined to SiGe. T
conduction bands at pointC are not significantly split in the
SiGe compared to those at pointA because the bisector o
the triangle vector at pointC (G-C) has a different crystal-
line orientation than that for the vector at pointA (G-A) and
because of the sixfold symmetry of the conduction-ba
minima.

To consider the quantum confinement effects of a sm
wire cross section on the electron and hole ground-state
ergies, the electron and hole confinement energies are
mated using the perturbation approach discussed in Re
from the 2D potential profiles we calculated from the stra

FIG. 10.D2 conduction-band edge of the structure drawn in F
8. The filled triangle shows the area of the Si0.8Ge0.2 region. Note
that thex andy axes are drawn on different scales.

FIG. 11. Valence-band edge of the structure drawn in Fig
The triangle shows the Si0.8Ge0.2 region. Note that thex andy axes
are drawn on different scales.
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fields. Here the electric-field effect and strain effect on t
coupling between upper valence bands are neglected.
the 1D Schro¨dinger equation was solved in the@100# direc-
tion using a Si longitudinal electron effective mass of 0.
~for theD2 conduction band in the@100# k direction! and a
heavy-hole effective mass of 0.49 at a given position in
@01̄1# direction. The resulting potential profiles as a functi
of positions in the@01̄1# direction were then solved using
1D Schrödinger equation~using a transverse Si effectiv
mass of 0.19 and a heavy-hole effective mass of 0.49! to get
the approximate energies of the ground states. The effec
Ge on the masses was second order and not considered
electron and hole confinement energies~energy difference
from the ground state of large size! for Si0.8Ge0.2,
Si0.6Ge0.4, and Si0.4Ge0.6 quantum wires are shown in Fig
12. The quantum effect is significant when the height of
SiGe is less than 10 nm. For a 5-nm-high Si0.8Ge0.2 triangle,
the confinement energies of the electron and heavy hole
about 0.07 and 0.05 eV, respectively. The confinement e
gies ~size effect! of the electron and hole increase as G
concentration increases. For 5-nm-high Si0.6Ge0.4 and
Si0.4Ge0.6 triangles, the electron~heavy-hole! confinement
energies increase to 0.12 eV~0.08 eV! and 0.18 eV~0.12
eV!, respectively. These calculations can be used to pre
the photoluminescence energies of the V grooves. The
ferences between the energies of the lowest electron
highest hole~heavy hole in this case! states are given in Fig
13 to first order for different Si12xGex sizes andx values

.

.

FIG. 12. Confinement energies~energy difference from the
ground state of a large structure! of ~a! electrons and~b! heavy
holes as a function of the height of the SiGe V-groove struct
with Ge concentrations of 20%, 40%, and 60%.
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~0.2, 0.4, and 0.6!. Although the electron and hole wav
function will have their maxima in different locations withi
the SiGe, we neglect any possible resulting electrical-fi
effects on the transition energy. Any exciton effects are a
neglected. First notice that for large SiGe regions, when o
strain and not quantum effects are relevant, the transi
energies are smaller than those predicted for planar pse
morphic SiGe layers on Si~100! with the samex ~shown for
reference as dashed lines!. For example, the transition energ
is 0.94 eV for a Si0.8Ge0.2/Si V-groove structure with a
height of 50 nm, compared with the 1.09-eV Si0.8Ge0.2 bulk

FIG. 13. Lowest transition energies from the electron to
heavy hole as a function of the height of the V-groove Si12xGex
quantum wire withx520%, 40%, and 60%. The dashed lines sh
the photoluminescence energies from the 2D conventio
Si12xGex biaxially strained layer with~a! x520%, ~b! x540%,
and ~c! x560%.
ar
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value and the 0.99-eV 2D strained Si0.8Ge0.2 epitaxial layer.
This larger decrease in transition energy in V-groove str
tures is mostly due to a significantly lower conduction ba
and higher valence band in SiGe in the V groove, an eff
that does not occur in 2D structures. When the size
creases, the transition energy increases. Forx520%, the
transition energy of a triangle less than 7 nm high is p
dicted to be larger than that of a 2D conventional structu

VI. SUMMARY

In summary, we have calculated the band lineups of
and 0D structures: a sphere, a long cylinder, and V-gro
SiGe inside an infinite Si matrix. For Si12xGex inside a Si
matrix, the band alignments are strongly type II for both t
sphere and cylinder cases. The conduction-band minima
in Si matrix and the valence-band maxima lie inside t
Si12xGex inclusion. For the V-groove SiGe one-dimension
structure, the conduction-band minimum and the valen
band maximum are both in SiGe, but at different points
real space. The transition energies from the lowest elec
state to the highest heavy-hole state are estimated cons
ing quantum effects. This work demonstrates the importa
of accurately accounting for the effects of 3D strain distrib
tions in strained-layer nanostructures and that the relat
ship of photoluminescence energies to particle compositi
may not be straightforward in some cases.
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