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The strain field distributions and band lineups of zero-dimensional and one-dimensional strained pseudo-
morphic semiconductor particles inside a three-dimensional matrix of another semiconductor have been stud-
ied. The resulting strain in the particle and the matrix leads to band alignments considerably different from that
in the conventional two-dimensionéD) pseudomorphic growth case. The models are first applied to an ideal
spherical and cylindrical $i,Ge, particle in a large Si matrix. In contrast to the 2D case, the band alignments
for both structures are predicted to be strongly type I, where the conduction-band edge and the valence-band
edge of the Si matrix are both significantly lower than those in the , &e, inclusion, respectively. Band
lineups and the lowest electron—heavy-hole transition energies of a pseudomorphic V-grog@&eSiuan-
tum wire inside a large Si matrix have been calculated numerically for different size structures. The photolu-
minescence energies of a large SiGe, V-groove structure on Si will be lower than those of conventional 2D
strained Si_,Ge, for similar Ge contentd.S0163-182607)04528-1

[. INTRODUCTION pared with results where the strain is calculated numerically
using the finite-element approach taking anisotropies into ac-
There has recently been an increasing interest in zergount. Numerical results are derived in Sec. V for a
dimensional(0D) quantum dots and one-dimensiordD)  V-groove Si_,Gg, quantum wire, considering the aniso-
quantum wires consisting of a pseudomorphically strainedropic elastic properties of 5i,Ge, material. A perturbation
epitaxial semiconductor surrounded by a matrix of a secon@Pproach is used to get the quantum confinement energy in
semiconductor. Such material systems include Sbe, on  the small V grooves.
Si (Refs. 1 and Rand InGa _,As on GaAs>~® While the
effect of uniform strain in biaxially strained pseudomorphic Il. STRAIN DISTRIBUTION OF IDEAL STRUCTURES
two-dimensional(2D) layers on planar substrates is well

known/® the effect of strain on band alignments in pseudo- In order to determine the band alignments of a system, the

] : strain distribution in the space is required. For the purposes
morphic 0D and 1D particles generally has not been €Xof an analytical calculatign it is asqsumed at first E[Jhal'? the
plored. _ _ _ _ elastic properties of Si and Ge are isotropic. The results will
In this paper we first calculate the spatially varying strainy, o compared with the anisotropic case later. We also con-
fields and resulting band alignments for ideal spherical andger only the ideal pseudomorphic interface.
cylindrical pseudomorphic inclusions in an infinite matrix
and apply the results to Si,Ge, in Si assuming that the
materials are isotropic. The results are very different from
those in a uniform biaxially strained 2D layer and the type of ~Conceptually, a pseudomorphic 0D dot can be formed by
the band offsettype I vs type 1) can be changed. The finite- feplacing atoms in a sphere of radisin an infinite matrix
element method is then used to investigate the strain distrRf & semiconductor with atoms of a second semiconductor of
bution in and around a single V-groove, SjGe, quantum different lattice constant. If the lattice constant of the relaxed

wire buried inside a large Si matrix. The electron and holdnclusiona; is larger(smallej than that of the matrbay,,

energy levels are obtained in order to compare with experiP0th materials are under compressitensilg stress. This

mental photoluminescence values. was modeled using continuum linear elastic theory assuming
In the following section we will first discuss analytical M° defects or plastic deformation. The problem of an isotro-

i trib I : ; ic spherical inclusion inside an isotropic matrix was solved
strain distributions for ideal symmetry structures, i.e.,P'C SPhercall : pic matri>
y>1to the first order of the lattice mismatch be-

pseudomorphic 0D spheres and 1D cylinders made up Y EShelby’ _ |
isotropic materials. In Sec. I1l we will present the approachtWeen the inclusion and the matrig,=a;/an—1. In the

to calculate band alignments from the strain distributions folInclusion, only a uniform hydrostatic strain exists, with a
lowing_ the model-solid approachof Van de Walle and Value of

Martin”® and Pollak and CardorfaThe results for pseudo-

morphic Sj_,Ge, inside a Si matrix using the analytic mod- e —c (l_ 1) (19

els are given in Sec. IV. The analytic results are also com- n-Em oy ’

A. Spheres
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FIG. 1. Strain distribution vs/R ratio of the distance over the FIG. 2. Strain inside a §iGe, sphere as a function of

radius of the sphere for the structure of 3 §le,, sphere inside a  Rsi/Rsi, e, ,» the ratio of the radius of the Si matrix over the SiGe
Si matrix. &, ande, are the tangential and radial strain components.sphere. The infinite matrix approximation is good fg; several
The strain inside SiGe is uniform and hydrostatic. times larger tharRg;ge.

where y=1+ 2K (1—2v,)/K;(1+ v,), K; andK,, repre- Serted in an infinite matrix of smalletargey lattice con-
sent the bulk modulus of the inclusion and the matrix, ancdt@nt. For a pseudomorphic structure, the axial strain in the
v is the Poisson ratio of the matrix. In the matrix, only Matrix is

“normal” (no shear strains exist, in both the radial and

tangential directions, which are given by £22=0. (28
The radial and tangential strain components in the matrix
3 g2
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The strain in the matrix has no hydrostatic component; its | i
magnitude is independent of the absolute size of the spher@Nd in the cylinder
but only related tor/R, the ratio of the distance from the e~ 2d)
center and the radius of the sphere. Note that the result per- zz m?
tains only to isolated spheres, not to an interaction array of 1
spheres. gr=¢,= Em( —— 1) , (29
The strain components, ande ; are plotted in Fig. 1 for Y
a Sp ¢Gey » sphere inside an infinite Si matrix. The uniformly \yith
distributed hydrostatic strain inside the sphere 3.4
%1072 and in the matrix around the sphere the radial and 1 Kml-2v,

!

tangential strain components are9.4x10 % and 4.7 Y
X 103, respectively. In real materials, the size of the matrix

is finite. In the case of a finite spherical matrix, the strainFor a Sj¢Ge, » cylinder inside a Si matrix, the strain com-
field also may be found analytically. Figure 2 gives the ponents are plotted in Fig. 3. The strainande . inside the
value of the hydrostatic strain inside the, §be, , inclusion  cylinder would be—1.01x 10~ 2 with a lattice mismatch of
as a function of the ratio between the radius of the matrix and-8.1x 10”2 in the z direction. In the matrixe, ande, are
the inclusionRg;/Rsjge. The strain inside SiGe decreases as—7.1xX10 2 and 7.%x 10 3, respectively, at the boundary.
the size of the matrix decreases. ButRY;/Rgice=3, the

strain inside the sphere is already 97% of the value of the Il. CALCULATION OF BAND ALIGNMENTS

infinite model. Therefore, the magnitude of strain distribu- FOR STRAIN DISTRIBUTION

tion can be estimated using an infinite matrix as long as the

radius of the matrixRg; is several times larger than the radius _ TO determine the effect of strain on band alignments, we
of the SiGe spher&g;ge. first define thexyz axis for our analysis in the usufl00],
[010], and[001] crystal directions. The procedure for obtain-
ing the lineups follows thenodel-solid approaclof Van de
Walle and Martin’® In this theory the average energy of
To model a 1D structure, an infinitely loriin the z di-  highest valence bands at tRepoint E? ,, is set on an abso-

rection cylindrical-shaped inclusion with radiuR is in- lute scale for bulk relaxed material. The effect of spin-orbit

:1+Vi+?i 1+vy,

B. Cylinders
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08 - ! T T T ] sented byw), EL ,, is determined by adding the shift of the
Sig %2 | SiMatix — o minimum due to strainAE{ , to the position of the
e ‘ conduction-band minimum in bulk materigf ,,, where
ol .
- | Ega~Egat 3 +EDay (5
X :
P B and
st : : :
2 el | . | EL,~AEL,+E%,, ©)
Egya is the distance from the valence-band maximum to the
ey | minimum of the conduction band of typein relaxed bulk
Opp——— material. AE. , can be written a5
0 1 2 3 4 5 ) -
R AE]C,a:[Egl—’—Egé'jé‘j]:g’ (7)
FIG. 3. Strain distribution v§/R ratio of the distance over the WhEYe lis the gn|t tensora |sa the anLt vector to the vaI'Iey
radius of the cylinder for the structure of &, g6e, , cylinder inside j, & is the strain tensor, anflj and= [ are the deformation
a Si matrix.e, and ¢, are the tangential and radial strain compo- Potentials for conduction band. The quantity= g+ 3E
nents in the polar plare,, is the axial strain. sometimes also denoted a$§, is the hydrostatic deforma-

tion potential for the conduction banrd The degeneracies of
coupling(H,,, assumed to be independent of styaind the  conduction-band minima not &t (e.g.,A andL) are usually
effects of strain K,) are then added to this starting point to split by nonhydrostatic strain; conduction-band minimd’at
get the position of an individual valence-band maximum: are only subject to hydrostatic strain shiftee second term
on the right-hand side in Eq7) vanishe$
E,=E° _+(J,my|HgotH,|J,m;). (3)

v,av
The sixfold degeneracy of the valence-band maximasr V- IPEAL SYMMETRIC STRUCTURES OF Si ,_,Ge/Si
surr_lec_i at thel_“ po_int) in bulk material i_s split by the spin- We now apply these formulas to the case of a single
orbit iinteraction into a fourfold multiple(J=3/2, m;=" gj  Gg, sphere and cylinder inside a Si matrix. The param-
+3/2,£1/2, andHg,= +A0/3) and a twofold multipletJ  eters used are listed in Table I. All were linearly interpolated
=1/2, my=*1/2, andH ;= —2A¢/3), whereA, is the spin-  for the alloys excepE? ,, andEg ,. In an alloyA; _,B, with

orbit splitting. The orbital-strain HamiltoniaH, for a given | Juice constantsa. and as mismatched E® . should be
band at thd" point is’ given by A B "y, av

— _ 2_1y2
Hs_av(sxx+8yy+szz) 3b[(Ly—35L%)exxtc.p] Es,av(x):XEO B+(1_X)E0

v,av, v,avA

—V3d[(LyL,+LyL)e,+c.pl, (4)

where the parametex, represents the hydrostatic deforma-
tion potential for the valence band. The quantitiesand d .
are uniaxial-deformation potentials,is the angular momen- Where the alloy lattice constamyg=aa(1—x)+agx. The
tum operator, and c.p. denotes cyclic permutation. Note tha?@nd gaps of the bulk relaxed alloys were fit with a quadratic
strain might shift the average valence-band positeh,, is ~ &°
for unstrained materigland lift the degeneracy between
|3/2,+3/2) and|3/2,=1/2) states.

For the conduction band, the absolute energy of the miniwherea refers to the type of conduction-band minimum and
mum of conduction-band valley of type A, L, orI" (repre- ¢, is a “bowing” parameter.

ag—a
+3x(1—-x)[—aP+a’] %, )
AB

EQ ,(0)=(1=X)ES , A+ XES = CoX(1=X),  (9)

TABLE |. Lattice constanta (in angstromy elastic constantg;;, ¢;», andcy, (in 10* dyn/cn?),

spin-orbit splitting Aﬁi average va:ltince beirliqagyaw. band gapdiigvﬁ,. EgL. andEJp, and deformation
potentialsa, , b, d, 2, E,, Eq, 24, andZ4 (all in eV) used in this workRefs. 7 and 8 except where

noted.

a cl1 cl12 c44  Egp EJa EoL Ao EJ . cr

a, b d = = = =h =5 o Ca
Si 5.43 1.675 0.650 0.801  3.37 1.17 2.06 0.04-7.03

246 —-235 —532 916 16.14 1.127 —6.04 1.98 08 0.206
Ge 5.65 1.315 0.494 0.684  0.89 0.96 0.74 0.3-6.35

124 -255 —5.50 9.42 15.13 -0.59 —6.58 -—-8.24 0.0 0.206

8Reference 19.
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T T T Si; _,Ge, on Si(100 substrates the conduction-band offset is
. Conduction Band - negligibly small with a large valence-band offéé€ in this
%’f case of a commensurately strained sphere the predicted band
2 T lineup is clearly type Il, with significant offset in both bands.
4 For example, fox=0.2, in the 2D case the conduction-band
— 10k : = offset calculated by the same approach is 0.01 eV, less than
©ooL 7 that caused by the uncertainty in parameté82 e\j.

X ; | As the direction of stress affects the band alignment for
s Valence Band the conduction bands not Bt the energy bands of the matrix
ool ; vary with direction and are plotted in Fig(l3) at the spheri-

— ) cal boundary =R, from[001] to [111], from[111] to [110],
0 1 2 3 4 S (a) and from[110] to [010Q] real-space directions. In tHd11]
r /R along [100] direction direction the conduction bands remain degenerate in their
. i bulk positions and are 0.09 eV higher than the minima in the
L0101 gliool g § gleo1 J [100]-like directions, but are still lower than those inside the
; ' sphere(which are independent of real-space direction be-
cause of the hydrostatic strain inside the sphérbe valence
bands change comparatively less with orientation compared
to the conduction bands. The valence-band maximum in the
matrix is highest in th¢111] real-space directio0.02 eV
more than in thg100] direction, so that the conduction-
band and valence-band extrema in the matrix lie in different

positions in real space. The band gap of the matrix has a
(b) minimum at the interface in thigl0Q] direction with a value

- ' of 1.03 eV, which is less than that inside the sphgr®8
[001, (111 [110] [010] eV). The band gap reaches a maximum in[th&1] direction
Real Space Directions Z}r;rétaorrrllatrix and is 0.07 eV larger than that in 0]

FIG. 4. (a) Band positions vs/R in the [100] direction for the ) Qualltatlyely S|m_|lar fes!”t,s aré obta!ned. for. a long
0D system: a $isGe, , sphere inside a Si matrix. All energies are Sio.85& .2 cylinder (with its axis in the[001] direction inside
referred to the top of the valence band in Si bulk material. Only the2 Si matrix. Figure &) is the band alignment in thl00]

A conduction band is plotted heré) Energy bands vs real-space '€al-space direction. Inside the cylinder the energy bands are
direction in the matrix at =R. spatially uniform, but split due to the nonhydrostatic strain.
The two conduction-band minima in th&00] k-space direc-
tions are 0.06 eV lower in energy than the four in {p&0]
and[001] k-space directions. The band alignment is type Il,

For the case of a §iGe, , sphere in a Si matrix, Fig.(d  with a 0.08-eV conduction-band offset and a 0.14-eV
gives the band extrema positions as a function/& in the  valence-band offset. The energies of the bands in the matrix
[100] real-space direction, which has the lowest conductiorvary in the different directions in the polar plane in real
band. (Note that the[100], [010], and[001] directions are space, which is given in Fig.(B). The six conduction-band
equivalent in this spherical inclusion cas€&he energies are minima split into three nondegenerate pairs; bands are only
relative to the top of the valence-band edge in relaxed Silegenerate in thgl10] direction. The[100] and[010] direc-
material. OnlyA conduction bands are plotted lasands lie  tions in real space have the lowest conduction baht30]
higher in energy for all Ge concentratioqslike the relaxed and[010] directions ink space, respectivelywhich are 0.06
alloy), assuming thé& band gap in bulk Si of 2.06 eV. Inside eV lower than that of th¢110] direction at the interface
the sphere, the band edges of SiGe are uniform due to the R. The conduction-band edges in the matrix in all real-
uniform strain distribution. As the stress in the sphere isspace directions are lower than that inside the cylinder.
hydrostatic, the conduction-band and the valence-band edg&hanges for the valence bands in different directions in the
remain degenerate except for the spin-orbit splitting of thematrix are small. The valence-band offset betweer| 10€)
valence band, although both bands are dropped from theand[110] directions in the matrix is 0.02 eV.
relaxed positions. In the Si matrix, the fourfold-degenerate A similar analysis was performed for a,gGe, » cylinder
conduction bana , is lifted up by 0.045 eV and the twofold- with its axis in the[011] direction [Fig. 6@a)]. ((011] and
degenerate conduction bard, (valleys in the[100] and [011] are the directions of straight lines usually defined by
[100] k-space directions for thgL0Q] real-space direction lithography on(100-oriented wafer3. Again the bands are
drops by 0.09 eV to form the conduction-band minimum. Asspatially uniform inside the cylinder, but four conduction-
there is no hydrostatic strain in the matrix, the weighted avband minima irk space in the plane of the cylinder lie lower
erage of these bands does not change. At the boundary, thigan the other two minimén the[100] direction rather than
conduction-band edge in the matrix is 0.15 eV lower thanhigher. In the matrix the relative alignment of the six
that inside the sphere and the valence-band edge in thmnduction-band minimum is also different, as shown in Fig.
sphere lies 0.10 eV higher than that outside the sphere. AB(a). The overall alignment between the inclusi@ylinden
though it is well known that for biaxially strained planar and matrix is again type Il, with a 0.11-eV conduction-band

1.2
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A. Si;_,Ge, quantum wires and quantum dots
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) ) o FIG. 6. () Band alignments in th[élﬁ] real space direction for
FIG. 5. (a) Band alignments ve/R in the[100] direction forthe 5 5 .Ge , cylinder with thez axis in the[011] direction. All en-

1D system: a QigGey» cylinder inside a Si matrix. The direction of ergies are plotted as in Fig. &) Energy bands vs the real-space
thez axis is in the[001] crystal direction. All energies are plotted as jjrection in the matrix at =R
in Fig. 4. (b) Energy bands vs the real-space direction in the matrix

atr=R.

o ticle inside a Si matrix, the conduction-band offsets are 0.80

offset and a 0.14-eV valence-band offset aldadgl]. The and 0.51 eV and the valence-band offsets are 0.41 and 0.60
largest energy offset between the cylinder and matrix foeV in the[100] real-space direction for the OD and 1D cases,
different directions are 0.06 eV for the conduction band andespectively. In the conventional 2D case the valence band is
0.01 eV for the valence band, as plotted in Fi¢o)6 higher in the SiGe, as in the OD and 1D cases. The lack of

To summarize these results of band extrema and offsets,
Fig. 7 shows the conduction-band and valence-band posi-  ————— —————— . -
tions in the Sj_,Ge, inclusion and in the Si matrixat r T 00 ncusion (sice)
=R in the [100] real-space directionas a function of Ge 14T
concentration in the sphere and cylindéne z axis in the 12 e T
[001] direction structures. Also shown for comparison are I
the band edges of a conventional 2D biaxially strained
Si; _,Ge, layer on a Si100) substrate(as in Ref. § calcu-
lated with the parameters in Table [The[100] real-space I }
direction represents the conduction-band minimum in the Si 04 g
matrix atr =R. Because of the uniform strain in the SiGe in o[ ¥ 2= o
all the three structures, there is no dependence of the [ et —eeeemmmrro- 77" Matrix (Si)
conduction-band minimum on the real-space direction in the ‘00 e Y Y ST
SiGe in all three casesFor both 1D and OD cases, the ' ) GeAConcentration
conduction-band minimum decreases in the matrix and in-
creases in the inclusion, while the valence-band edge in- g, 7. valence- and conduction-band edges in @ Sbe, in-
creases in the inclusion faster than in the matrix as the Gglusion and in the Si matrix as a function of the Ge concentration
concentration increases, in both cases leading to a type-fbr the 1D cylinder(the axis is in thd001] direction and 0D sphere
band alignment. The valence-band maximum in the matrixtructures at thg100] real-space boundary between the matrix and
lies marginally higher in other directions in the OD and 1D inclusion ¢ =R). The conduction and valence band of a conven-

particles as discussed earlier, but not enough to affect théonal 2D Sj_,Ge, strained layer on a §i00 substrate are also
sign of the band offset. For a pure Ge pseudomorphic parshown.

=== 2-D epi-layer

0.8

06 | o7

Energy (eV)
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dependence of the Si conduction band on the Ge concentra

tion in the 2D case leads to a much smaller conduction-band Si

offset in the 2D case compared to the OD and 1D cases,[1 00] E
however. While the exact band distribution will depend on D :

the exact shape of OD and 1D inclusions, the model sphere % A

and cylinder systems chosen here clearly show that care mus
be taken when directly relating photoluminescence energies

to the band gap of the inclusions, as the band type in these
structures can be strongly type II.

Si

— [011]
In the above calculations we assumed that the elastic
properties of the semiconductors are isotropic, i.e., we used FI|G. 8. Cross section of a SiGe epitaxial layer with a Si cap on
only the bulk modulusK=(C,;+2C,,)/3 and Poisson’s ra- a V-groove S{100 substrate.
tio v=C4,/(C41+C5) so that the strain was only a function

of r/R. But actual cubic crystal materials are anisotropic,in the [100] k-space directionlying in Si,_,Ge, near the

i.e.,C11— C1o— 2C44# 0. We then used finite-element analysis bottom of the V groove(point A) and the valence-band

to calculate the strain in the anisotropic case using a COM - vicim is the heavy-hole band in thg SiGe, at the cor-
_mercially available progrartf The results indicate that there ner of the top interfacéoint C). Band lineups of the points

B. Anisotropy and finite-element modeling

. X o S . the valence-band edge in Si far from the SiGe, interface.
cates that the isotropic elasticity assumption is good to firs ar from SiGe, the conduction-band edge in Siis 1.17 eV. At
order. The results of the strain distribution cannot be simply. ' . )

. oint A in SiGe, theA, conduction band is 0.07 eV lower
fan the lowest conduction-band point in Si, which occurs in

structures strain cannot be reduced to two normal COMPGe A, band at poinE. At pointC, the valence-band edge in

nents: tangentiale,) and radial €,).

V. Si;_,Ge, /Si V-GROOVE STRUCTURES 14

Cémduction Band Edge

Recently, the growth and photoluminescence measure-
ments of Sj_,Ge, quantum wires on a Si substrate with
etched V grooves have been reportdf Strain distributions

1.2

of a single wiré’ and an arra¥’ of wires were calculated 5 1,

assuming that the materials are isotropic. Reference 18 alsc g > : =
analytically calculated the effect of strain on the overall band & ¢, : Valence Band Edge
gap in wires, but the effect on the individual band edgesand * | —— —— |
electron and hole confinement energies were not reported. In |

this work we numerically model the strain in quantum-wire
structures, fully considering anisotropic material properties,
and present effects individually on both conduction and va- . i
lence bands. We then calculate quantum confinement ener: BID ciE AJF B
gies of carriers in their wires as the wire dimensions become
small and relate the results to photoluminescence experi- 12
ments.

We model the V-groove structure as a long wire with a
triangular cross section buried in an infinite matrix as shown
in Fig. 8. After the Si is etched, a sharp corner between two <

(2)

conduction band

{111 planes is formed. $i,Gg is selectively grown onthe & L 4
bottom of the V groove and capped by a Si epitaxial layer. > 887 T
The growth direction i§100] and the axis of the quantum &
wire is in the[011] direction forming an approximately tri- |

angular cross section with its wid#f2 larger than its depth.

We assume that the interface is free from any defects and 00
dislocations. The alloy segregation effect, which might cause

the alloy to be nonuniform throughout the triangle, is also
neglected. Using finite-element analyXsye calculated the

strain distribution, which relies onIy on the Shape of the cross FIG. 9. A conduction bands and valence bands al¢éagthe
section. Once the strain distribution is known, the bandsj/sj, (Ge, , interface of the V-groove structure afio) the vertical
alignments are derived from the same methods discussed b@ire cross-section bisector. k@) the solid lines are for points in-
fore. The conduction-band minimum is the twofdld band  side SiGe and the dashed lines are for points inside Si.

(b)
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1.25

e ——

FIG. 10. A, conduction-band edge of the structure drawn in Fig.
8. The filled triangle shows the area of the §e,, region. Note
that thex andy axes are drawn on different scales.

Conduction Band Lnergy (e¢V)
& s
&\

Heavy-hole Confinement Energy (eV) Electron Confinement Energy(eV)

the Si_,Ge, is 0.13 eV higher than poir in Si. A three-
dimensional map of thA, conduction band and the valence-
band edge for SikGe&), in Si are plotted in Figs. 10 and 11,
respectively. In SiGe theA, bands are lower and the
valence-band edges are higher than Si. Note that, as in the
case of a symmetric cylinder, holes are confined to SiGe.
However, while in the symmetric cylinder case the ‘ 1 . ! . {b)
conduction-band minimum is in the Si matrix, for the 0 10 20 30
V-groove structure the lower conduction band is in Si@e
point A). This results from the shape of the structure, which

causes a large nonhydrostatic strain at pdinthat splits FIG. 12. Confinement energie@nergy difference from the
conduction bands more strongly in the SiGe than in any ofround state of a large structiiref (a) electrons andb) heavy
the other cases discussed in this paper. The result is the onfigles as a function of the height of the SiGe V-groove structure
one in which electrons are strongly confined to SiGe. Thewith Ge concentrations of 20%, 40%, and 60%.
conduction bands at poi@ are not significantly split in the o ,
SiGe compared to those at poiAtbecause the bisector of f|elds: Here the electric-field effect and strain effect on th.e
the triangle vector at poin® (G-C) has a different crystal- coupling be"tvx{een upper_valence bands are neglegted. First
line orientation than that for the vector at poki{G-A) and the 1D'Schrd|r_1ger Qqugtlon was solved n the0q] direc-
because of the sixfold symmetry of the conduction-band!o" Using a Si longitudinal electron effective mass of 0.98
minima. (for the A, condupnon band in thgl00] k Q|rect|on)_ gnd.a

To consider the quantum confinement effects of a smalleavy-hole effective mass of 0.49 at a given position in the
wire cross section on the electron and hole ground-state er91L] direction. The resulting potential profiles as a function
ergies, the electron and hole confinement energies are esfif POSitions in the011] direction were then solved using a
mated using the perturbation approach discussed in Ref. 52 Schrainger equation(using a transverse Si effective

from the 2D potential profiles we calculated from the strain™@ss Of 0.19 and a heavy-hole effective mass of tdget
the approximate energies of the ground states. The effect of

Ge on the masses was second order and not considered. The

Height cf the V-groove (nm)

;""5 electron and hole confinement energiemergy difference

K3 from the ground state of large sjzefor SipGe

;? SigeGa4 and S Ge s quantum wires are shown in Fig.

E 12. The quantum effect is significant when the height of the
2 SiGe is less than 10 nm. For a 5-nm-high §&e, » triangle,

= the confinement energies of the electron and heavy hole are
g about 0.07 and 0.05 eV, respectively. The confinement ener-
S gies (size effect of the electron and hole increase as Ge

concentration increases. For 5-nm-high,&e 4, and

Sig..G&y 6 triangles, the electroriheavy-hole confinement

energies increase to 0.12 €3.08 eV} and 0.18 eV(0.12

eV), respectively. These calculations can be used to predict

the photoluminescence energies of the V grooves. The dif-
FIG. 11. Valence-band edge of the structure drawn in Fig. 8ferences between the energies of the lowest electron and

The triangle shows the §iGe, , region. Note that th& andy axes  highest holgheavy hole in this ca3estates are given in Fig.

are drawn on different scales. 13 to first order for different $i,Ge, sizes andx values
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value and the 0.99-eV 2D strained, b, » epitaxial layer.

This larger decrease in transition energy in V-groove struc-
tures is mostly due to a significantly lower conduction band
and higher valence band in SiGe in the V groove, an effect
that does not occur in 2D structures. When the size de-
creases, the transition energy increases. xe20%, the

transition energy of a triangle less than 7 nm high is pre-
dicted to be larger than that of a 2D conventional structure.

VI. SUMMARY

In summary, we have calculated the band lineups of 1D
and 0D structures: a sphere, a long cylinder, and V-groove
SiGe inside an infinite Si matrix. For Si,Ge, inside a Si
matrix, the band alignments are strongly type Il for both the

sphere and cylinder cases. The conduction-band minima lie
FIG. 13. Lowest transition energies from the electron to thein Si matrix and the valence-band maxima lie inside the

heavy hole as a function of the height of the V-groove_SGe, Si;_,Ge, inclusion. For the V-groove SiGe one-dimensional
quantum wire wittx=20%, 40%, and 60%. The dashed lines showstructure, the conduction-band minimum and the valence-
the photoluminescence energies from the 2D conventionaband maximum are both in SiGe, but at different points in
Si;_xGe, biaxially strained layer with@ x=20%, (b) x=40%,  real space. The transition energies from the lowest electron
and(c) x=60%. state to the highest heavy-hole state are estimated consider-

ing quantum effects. This work demonstrates the importance
(0.2, 0.4, and 0.6 Although the electron and hole wave of accurately accounting for the effects of 3D strain distribu-
function will have their maxima in different locations within tions in strained-layer nanostructures and that the relation-
the SiGe, we neglect any possible resulting electrical-fieldship of photoluminescence energies to particle compositions
effects on the transition energy. Any exciton effects are alsenay not be straightforward in some cases.
neglected. First notice that for large SiGe regions, when only
strain and not quantum effects are relevant, the transition
energies are smaller than those predicted for planar pseudo-
morphic SiGe layers on @00 with the samex (shown for The authors thank C. Van de Wal(¥erox) and J. Tsao
reference as dashed linesor example, the transition energy (Sandia for helpful discussions and NSF, ONR, Sandia Na-
is 0.94 eV for a §jGea),/Si V-groove structure with a tional Laboratory, and the Von Humboldt Stiftung for sup-
height of 50 nm, compared with the 1.09-e\4 §&,, bulk  port.
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