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Large-area electronics (LAE) enables the formation of a large number of sensors
capable of spanning dimensions on the order of square meters. An example is
X-ray imagers, which have been scaling both in dimension and number of
sensors, today reaching millions of pixels. However, processing of the sensor
data requires interfacing thousands of signals to CMOS ICs, because
implementation of complex functions in LAE has proven unviable due to the low
electrical performance and inherent variability of the active devices available,
namely amorphous silicon (a-Si) thin-film transistors (TFTs) on glass.
Envisioning applications that perform sensing on even greater scales, this work
presents an approach whereby high-quality image detection is performed
directly in the LAE domain using TFTs. The high variability and number of
process defects affecting both the TFTs and sensors are overcome using a
machine-learning algorithm known as Adaptive Boosting (AdaBoost) [1] to form
an embedded classifier. Through AdaBoost, we show that high-dimensional
sensor data can be reduced to a small number of weak-classifier decisions,
which can then be combined in the CMOS domain to generate a strong-classifier
decision.

To demonstrate the concept, we develop the system in Fig. 16.2.1. An X-ray
imager typically consists of a thin-film scintillator for converting X-rays to
photons. We develop an underlying array of photoconductors formed from
undoped a-Si, feeding an embedded thin-film classifier, formed from a-Si TFTs.
The photoconductors exhibit strong but non-uniform conductivity change in
response to illumination, as shown in the measured |-V characteristic.
Configured as the leg of a voltage divider, each photoconductor provides an
output voltage, shown in response to light and dark conditions. Measurements
show substantial variability and even failure of some sensors (Fig. 16.2.1). We
overcome these, as well as non-idealities in the TFT classifiers, demonstrating
the classification of five shapes with performance at the level of an ideal
MATLAB-implemented strong classifier.

Figure 16.2.2 shows the algorithmic block diagram of the AdaBoost classifier.
The outputs from N weak classifiers, implemented using TFTs, are provided to a
weighted voter (in the CMOS domain) to produce a strong-classifier output. In
machine learning, a weak classifier is defined as one that is restricted in its ability
to fit arbitrary data distributions, often resulting in substantial classification
errors, whereas a strong-classifier is one that can be trained to fit arbitrary
distributions. The key benefit of AdaBoost is that the performance required of the
weak classifiers is very low, namely only marginally better than 50/50 guessing
[1]. This enables simple weak-classifier implementations based on TFTs. In the
system, the weak classifiers are nominally implemented as linear classifiers. As
shown, each linear classifier, involves dot-product multiplication between an
input-signal vector X, whose elements correspond to the M sensor outputs, and
a classification vector ¢, whose elements correspond to weighting biases
provided from one-time training. The dot-product result is then compared to a
threshold for binary classification. Recent work has shown that weak-classifier
errors due to hardware imperfections can be overcome without the need to
explicitly characterize or model the imperfections. This is because AdaBoost
performs weak-classifier training iteratively, enabling the errors from previous
weak classifier iterations to be fed back and compensated for during training of
subsequent iterations [2]. In our system demonstration, this one-time training is
performed offline; however, the training algorithm can be implemented in an
embedded CMOS IC (as in [2]), with the classification vectors c;...cy from N
iterations of training provided through a low-speed serial interface (such as [3]).
In our implementation, number of sensor outputs M is 36, and number of weak
classifiers N is 2 to 5, demonstrating that substantial reduction of the raw sensor
signals is achieved.

Figure 16.2.3 shows the implementation of the TFT-based classifier, which
processes the sensor outputs Vg ;.35 using the weighting biases Vg 1.y 1.3 (these
are realized via programmable TFTs, as described below). To approximate a
linear classifier, the element-wise multiplication required within the dot product
is implemented as the output current from a branch of two series-connected
TFTs. Two such branches are configured as a sub-unit to implement pseudo-
differential outputs, enabling multiplication by positive and negative weighting
biases, as required from training. The summation required within the dot

product is implemented by combining the branch currents within a weak
classifier through a load resistor Ryc. The resulting differential dot-product
outputs Vq4.y can be provided to a CMOS IC for threshold comparison and
weighted voting, which is found to be somewhat more sensitive to
computational errors [2], and thus best performed in CMOS. Fig. 16.2.3 shows
the multiplication transfer function achieved by a two-TFT branch, along with
measurement bars illustrating variations across 15 instances. Both substantial
variation and deviation from the ideal multiplication transfer function is
observed. Nevertheless, as shown below, the system is able to achieve
strong-classifier performance.

The programmable weighting biases V; ;.55 1.y Can be implemented by a range of
thin-film memory architectures/devices (e.g. [4]). Figure 16.2.4 shows the
approach used in the system. We make use of deliberate threshold voltage
shifting in a conventional a-Si TFT due to charge trapping in the silicon nitride
dielectric, which can be induced (removed) by high positive (negative) gate
electric field. Programming a threshold voltage shift in the range of 0-30V (as
required from weak-classifier training) is accomplished by applying a
gate-source programming/erasing voltage of 80V for 1ms-100s. The
programmable TFT is chosen to be the lower device within the multiplier
branches to ease application of the programming voltage. Reliable threshold
voltage shifting is achieved with respect to programming time, with a measured
standard deviation <1.0V. Experiments explicitly applying random variation in
V.1-361-n With o of 1.5V suggest that this level of variation is robustly tolerated.
While the approach used incurs long programming times, optimizations of
charge traps in the gate nitride have shown that these times can be substantially
reduced [4].

To demonstrate system functionality and performance, we perform image
classification of five shapes (cross, tee, el, triangle, ring) by training the system
in each case as a one-versus-all classifier. The a-Si 6x6 photoconductor sensor
array and TFT weak classifiers are both fabricated on glass substrates at process
temperatures <180C (separated samples are fabricated to facilitate testing). The
dataset consists of 150 instances corresponding to various shading and lighting
conditions (dark, ambient, bright) for the shapes, which are displayed onto the
thin-film photoconductor array using a micro-projector. Conventional five-fold
validation is performed to divide the dataset into training and testing subsets. In
addition to providing the sensor outputs to the TFT weak classifiers for detection
by the system, the raw sensor outputs are acquired for evaluation. In particular,
the acquired data is used for training and classification by a MATLAB-
implemented support vector machine (SVM) with radial-basis-function kernel
[5], which is a widely used strong machine-learning classifier. The measured
results, corresponding to true-positive (tp) and true-negative (tn) rates following
each iteration of weak-classifier training, are shown in Fig. 16.2.5. Boosting of
the TFT classifier is demonstrated by the performance improvement achieved
with each iteration, eventually converging to high tp/tn (>85%/>95%). As seen,
in all cases, the TFT-based classification system achieves performance close to
that of an ideal SVM, with just 2-5 iterations, thus substantially reducing the
signals required for image detection.

Fig. 16.2.6 shows the experimental setup and summarizes the classifier system
performance. The micro-projector and breakout board used to facilitate testing
of the thin-film sensor array and TFT classifiers are shown. Micrographs of
fabricated a-Si photoconductors and TFT weak classifiers are in Fig. 16.2.7.
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Figure 16.2.1: System architecture, constructed out of non-ideal thin-film a-Si = Figure 16.2.2: Architecture of the classification system consisting of TFT

photoconductors and transistors. linear weak classifiers trained using the AdaBoost algorithm.
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Figure 16.2.3: Implementation of TFT-based linear weak classifiers. Figure 16.2.4: Programmability required for weighting biases achieved by
Weighting biases (Vg,.y 1.35) are applied via programmable TFTs. deliberate threshold-voltage shifting of a-Si TFTs at high gate fields.
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Figure 16.2.5: Performance of fabricated TFT system demonstrates Figure 16.2.6: System prototype, test setup, and performance summary of the
classification performance near that of an ideal SVM. thin-film image sensing and classification system.
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