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Abstract 

Early-stage damage detection for buildings and bridges re­
quires continuously sensing and assessing strain over large sur­
faces, yet with centimeter-scale resolution. To achieve this, we 
present a sensing sheet that combines high-performance ICs with 
flexible electronics, allowing bonding to such surfaces. The flexi­
ble electronics integrates thin-film strain gauges and amorphous­
silicon control circuits, patterned on a poly imide sheet that can 
potentially span large areas. Non-contact links couple digital 
and analog signals to the ICs, allowing many ICs to be intro­
duced via low-cost sheet lamination for energy-efficient readout 
and computation over a large number of sensors. Communi­
cation between distributed ICs is achieved by transceivers that 
exploit low-loss interconnects patterned on the polyimide sheet; 
the transceivers self-calibrate to the interconnect impedance to 
maximize transmit SNR. The system achieves multi-channel 
strain readout with sensitivity of 18J1'strainRMs at an energy 
per measurement of 270nJ, while the communication energy is 
12.8pJ/3.3pJ per bit (Tx/Rx) over 7.5m. 

System Approach 

Large-area electronics (LAE) is based on processing thin films 
at low temperatures. This allows a broad range of materials to 
be used for creating diverse transducers on large (>lDm2 ) ,  con­
formal substrates [1,2] . Although, thin-film transistors (TFTs) 
are also possible (using organics, amorphous-silicon (a-Si:H), 
metal-oxides, etc.) ,  these have orders of magnitude lower per­
formance and energy efficiency than crystalline silicon ICs. Fig. 
1 shows the proposed sensor-network-on-foil concept, aimed at 
achieving scalable sensing and high-performance computation, 
by extensively combining ICs with a flexible LAE sheet. The 
IC-to-LAE interfaces pose the primary limitation to system scal­
ability. To overcome this, non-contact coupling is employed. In­
ductive and capacitive antennas are patterned on both the LAE 
sheet and on the flex-tape packaging of the ICs. We achieve 
assembly via sheet lamination, with typical adhesive thickness 
<lDOj.lm; this enables proximity coupling with low energy. 
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Fig. 1. Scalable sensor-network-on-foil system concept. 

To substantially reduce the total number of signals required 
from the ICs, the LAE sheet integrates TFT-based control and 
access circuits that enable sequential access to individual strain 
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sensors in the array. The ICs integrate instrumentation and 
signal-generation circuits for access control, AC biasing, and 
readout over the sensor array. For communication over the dis­
tributed sheet, the ICs use transceivers that exploit low-loss, 
large-area interconnects. The interconnect impedance substan­
tially affects the energy and SNR of communication; the trans­
mitters thus self-calibrate to the resonant point of the intercon­
nect, which is difficult to otherwise predict in a large-scale sheet. 

Thin-film LAE Circuits for Sensor-array Control 
Fig. 2 shows the fully passive LAE circuits. Just four signals 

are required from the IC for both power and control, to sequen­
tially access the individual sensors. We fabricate the circuits 
using a-Si:H [3] (this is currently the most stable LAE semicon­
ductor). The mobility (rv1cm2/Vs) and unipolar (n-channel) 
nature is similar to other LAE technologies (e.g., organics, ox­
ides, etc.) ,  making the topologies transferrable. 

Fig. 2. Thin-film LAE circuits for access control of multiple sensors. 

While the IC operates at 1.2V, the LAE circuits need over 
6V for reasonable performance. The inductive interfaces, which 
require AC-modulated IC control signals, can provide voltage 
step-up. This, however, increases the power of the IC power 
amplifiers and/or requires high-Q inductors. Though thin-film 
diodes (TFDs) have been reported [4] , we develop a-Si:H Schot­
tky TFDs for low-voltage drop and good rectification character­
istics, to demodulate the IC signals (measured I-V and capac­
itance curves are shown in Fig. 2) . In the full-wave rectifier 
configuration shown, the AC current through the TFD capac­
itances is cancelled since the inputs oscillate in counter phase. 
This enables rectification of high frequencies. The interfaces use 
a frequency of 2MHz, yielding a quality factor of 126 for 2cm 
planar inductors. 

The scanning elements form a chain that uses 3-phase control, 
with SCANl-3 asserted in round-robin manner. The Nth scan­
ning element receives a precharge signal (PRE) from the N-2 
element and a reset signal (RST) from the N+1 element to con­
trol an nFET pass device (the first two elements are precharged 
by GRST). The sensor enable signals (EN <i» are thus asserted 
one-at-a-time down the chain. Since only nFETs can readily be 
created using a-Si:H, capacitive bootstrapping is used on the 
pass device to preserve the 6V logic level throughout the circuit 
(this is achieved using the low-voltage-drop Schottky TFDs). 

Instrumentation Circuits for Sensor Readout 
Fig. 3 shows the multi-sensor readout circuit. Thin-film re­

sistive strain gauges, calibrated for aluminum beams and having 
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standardized resistance of 1kO, are used. Large access TFTs, 
which are controlled by the scanning circuits, gate the AC bias­
ing signal (VL2 = 0.6VAM p ) , which is provided by the IC over 
an inductive interface. The IC's PA operates in class-C mode, 
rather than class-D, since the power required is relatively low for 
practical values of the frequency (5MHz) and the patterned in­
ductors (3.5j.lH) (higher frequencies are limited by the parasitics 
of the access TFTs, and larger inductors are limited by phys­
ical size). The PA's duty cycle is optimized to 20%, yielding 
a measured efficiency of 82%. The AC-modulated sensor sig­
nal is then acquired through a capacitive interface (this results 
in reduced loading on the sensor bridge).  Demodulation and 
readout is then performed via a synchronous GM-C integrator. 
Synchronization requires that the PA have proper phase, which 
is thus achieved via a tunable delay line. The GM stage demod­
ulates the sensor signal for integration by a low-power op-amp. 
Demodulation at the GM stage output mitigates l/f noise and 
helps reject error signals of orthogonal phase that originate from 
admittance mismatches in the branches of the sensor bridge. 
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Fig. 3. Multi-sensor readout circuit for thin-film resistive 

strain-gauge bridges. 

Transceiver for Macro-range Communication 
Fig. 4 shows the transceiver for communication over dis­

tributed ICs. Previous efforts to exploit large-area interconnects 
have used pulsed signals and have been limited by the intercon­
nect impedance [5] . For strong coupling over the non-contact 
links, we use AC signaling with on-off keying. The severe and 
unpredictable interconnect impedance is overcome using an 8-bit 
digitally-controlled oscillator (DCO) to self-tune the transmitter 
carrier frequency to the resonant point of the full interconnect 
network. The local receiver self-senses the transmitted signal, 
allowing a DCO code to be selected via a gradient descent algo­
rithm to result in the largest amplitude (a measured DCO sweep 
is shown).  To recover digital data, the receiver uses a preampli­
fier and peak-detector, each biased with 3j.lA. Synchronization 
and multiple access between transceivers can be achieved by 
digital-baseband processing (not included on chip).  
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Fig. 4. Transceiver circuits for communication over distributed ICs 

using large-area interconnects. 
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Measurement Results 
We fabricated the LAE circuits on 50j.lm polyimide foil, and 

the ICs are fabricated in 130nm CMOS from IBM. Fig. 5 shows 
prototype photographs. Fig. 6 gives measured waveforms, show­
ing the LAE rectifier and scanning circuits generating digital en­
able signals (>6V) from 1.2V, AC-modulated IC control signals. 
The enable pulses can switch at a rate of 500Hz, limited by the 
load capacitance of the TFT sensor-access switches (Fig. 3). 

Fig. 5. Micrographs of the 130nm CMOS IC and large-area 

electronics components we fabricated on 50J-im-thick polyimide. 

Fig. 7 summarizes the measurements. Readout-circuit out­
puts (digitized by an ADC) are shown for sensing applied to a 
30cm x 180cm cantilever beam (outputs are correlated with read­
ings from a commercial strain reader, Vishay 3800).  The total 
readout noise is 18j.lStrainRMs, with an energy/measurement 
of 270nJ for the readout circuit and 2.6j.lJ for the scanning­
circuit drivers. The energy /bit of the transceiver at 2Mb/s (with 
BER<1O-5) is shown versus communication distance (Tx/Rx: 
12.8/3.3pJ @7.5m),  with the DCO codes given in parentheses. 
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Fig. 6. Measured waveforms (oscilloscope capture) , showing LAE 

access-circuit outputs from AC-modulated IC control signals. 
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Fig. 7. Measurement summary; system tests were also performed by 

applying the prototype to a cantilever beam. 
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