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ABSTRACT 

We have developed low-defect, low-stress plasma-enhanced 
chemical vapor deposition (PECVD) silicon nitride (SiNx) at 200°C.  
The intrinsic stress of this SiNx film is only -12.9 MPa (compressive).  
Coupled with the low defect (low charge trapping) characteristic of 
this low-stress SiNx, we are able to demonstrate amorphous silicon 
thin-film transistors (a-Si TFTs) with nearly threefold increase in 
mobility μe to 0.87 cm2/Vs and 50% decrease in VT to 2.8 V, 
compared to a control SiNx. The low-stress a-Si TFT technology is 
amenable to flexible AMOLED and AMEPD display applications. 

INTRODUCTION 

Silicon nitride (SiNx) is commonly used in thin-film transistor 
(TFT) backplanes as gate dielectric, isolating interlayer, and impurity 
barrier.  Conventionally, SiNx deposited on glass at 300-350°C using 
plasma-enhanced chemical vapor deposition (PECVD) technique 
offers a low charge-trapping gate dielectric interface with amorphous 
silicon (a-Si) for commercial TFT-LCD flat-panel displays.  Recently, 
as flexible active-matrix displays have caught much attention, [1] the 
technical challenge that must be met is accommodating thin film 
device layers on unconventional substrates, such as plastic foils.  
These foils typically are compatible with process temperatures of 200
°C or below, and one seeks both mechanical reliability and electronic 
performance. [2]  One strategy involves the deployment of a new 
transparent plastic with a high glass transition temperature (Tg) for a 
300-350°C a-Si TFT fabrication process, with a demonstrated DC 
current lifetime over 100 years. [3]  Alternatively, H2 dilution during 
the PECVD of both a-Si ad SiNx has improved TFT performance, 
due to the “in-situ” removal of weakly bonded Si atoms in a-Si 
during growth. [3,4]  Furthermore, adding H2 to the deposition of 
SiNx also shows evidence of reducing the electron trap density in 
SiNx and improving the quality of a-Si:H grown on top of it. [5,6]  In 
this paper, we explore the latter strategy by comparing 200°C SiNx 
films with different H2 and SiH4-to-NH3 gas compositions, in terms 
of interface defect density and mechanical stress.  Furthermore, 
improved a-Si TFT performance with low-stress SiNx is reported. 

EXPERIMENT 

A set of 200°C PECVD SiNx films were prepared on 4-inch p-
type Si substrates for intrinsic stress measurements.  “Recipe A” for 
300-nm SiNx film  (SiNx-A) corresponds to a precursor gas mixture 
of SiH4, NH3, N2, and H2 with a 1:4:16:18 gas ratio (46% H2 
dilution), resulting in an intrinsic film stress of -251.4 MPa 
(compressive) measured by the substrate curvature technique.  
“Recipe B” SiNx (SiNx-B) comprises SiH4, NH3, and H2 with a 
1:25:50 gas ratio (65% H2 dilution) and an intrinsic stress of -12.9 

MPa (compressive) for a 250-nm film.  Metal-Insulator-
Semiconductor (MIS) capacitors (in the inset of Figure 1) were 
fabricated on Generation 2 (G2) 370×470 mm2 glass for 100-kHz 
capacitive-voltage (C-V) measurements of the two SiNx films.  The 
capacitors comprise MoW (100 nm) bottom electrode, SiNx-A (300 
nm) or SiNx-B (250 nm) insulator, 90% H2-diluted a-Si (200 nm) 
semiconductor, n+ a-Si (50 nm) ohmic contact, and Ti/Al/Ti 
(50/100/50 nm) top electrode.  Their charge-trapping densities were 
deduced from the plot areas enclosed by the hystereses in C-V curves. 

Back-channel-passivated (BCP) a-Si TFTs on G2 glass using 
SiNx-A as gate and passivation dielectric were contrasted with those 
using SiNx-B. The TFT process flow was described elsewhere [7] 
with the process conditions and thicknesses substituted by those 
described in this report. 

TEST RESULTS AND DISCUSSIONS 

Intrinsic Film Stress 

Mechanical stress of SiNx is crucial for flexible display 
fabrication since it can induce self-roll-up of the flexible substrate, 
causing handling issues in manufacturing and product design.  SiNx 
films with high intrinsic stress are also susceptible to cracking or 
buckling on flexible substrate with poor thermal stability, leading to 
a high failure rate for the thin film devices.  The intrinsic stress of 
SiNx-B film is -12.9 MPa, which is only 5% that of SiNx-A film 
(-251.4 MPa).  Not only is the low stress of SiNx-B film essential for 
ease of fabrication and design convenience for flexible displays, it 
also reduces excessive mechanical damages to the display with a 
flattened rollout. Furthermore, the low interface defect density of 
SiNx-B in MIS capacitors and a-Si TFTs are discussed next. 

C-V Measurements 

Figure 2 illustrates the hysteresis in MIS capacitance due to 
charge-trapping at or near the SiNx interface with a-Si. Capacitances 
for SiNx-A and SiNx-B are normalized to their maximum values at 
strong accumulation with 23.8 and 26.4 nF/cm2, respectively.  The 
clockwise direction of the hysteresis is indicative of negative 
(electron) charge trapping.  Referring to the inset of Figure 1, it is 
possibly due to the electron transfer from a-Si accumulated at the 
interface to the deep traps in SiNx, causing a positive threshold 
voltage (VT) shift in a-Si TFT. [8]  The magnitude of trapped charges 
(Qtrap) and trapped charge density (Ntrap) can be estimated from the 
area enclosed by the hysteresis using these equations, 

 ∫Δ≈
biasV

trap dVVCQ )( ,    (1) 



and, qQN traptrap /= , with q = 1.6×10-19 C.  (2) 

The trapped charge densities for SiNx-A and SiNx-B are 1.1×1011 
and 6.9×1010 cm-2, respectively, a 36% lower charge trapping with 
the low-stress, H2-diluted SiNx.  It is well known that H can passivate 
Si dangling bonds and promote strong Si bonds by breaking weak Si 
bonds and supplying the needed energy for strong bond formation. 
[3,4]  Similarly, the hydrogen could reduce the number of trapping 
sites in the SiNx. [5]  The effect of SiNx stress, however, is less clear.  
It may exert strain on a-Si at the interface, thereby breaking a certain 
amount of weak bonds in a-Si network without the accompanied 
“bond-healing” energy from H for Si bond reformation. 
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I-V and On-Resistance Measurements 

Figure 3 compares the I-V characteristics of BCP a-Si TFTs with 
SiNx-A and SiNx-B gate dielectric, respectively.  Device mobility 
(μe), VT, subthreshold slope (SS), and maximum gate current at VDS 
= 10 V for SiNx-A devices are measured to be 0.33 cm2/Vs, 5.8 V, 
1.67 V/dec, and 2.3 pA, in contrast with those for SiNx-B devices of 
0.87 cm2/Vs, 2.8 V, 0.63 V/dec, and 2.55 pA.  These results indicate 
that the lower interface defect density for the SiNx-B devices is 
consistent with their low charge-trapping characteristic, yielding 
higher μe, lower VT, steeper SS, and approximately one order of 
magnitude higher drive current than SiNx-A devices in current 
saturation mode.  Such an improvement is conducive to high 
brightness and contrast for current-driven display devices, e.g., 
organic light emitting diode (OLED). 

-10 -5 0 5 10 15 20
10-14

10-12

10-10

10-8

10-6

10-4

W/L =150/15 (μm)

a-Si TFT with
high-defect SiNx

a-Si TFT with
low-defect SiNx

 

D
ra

in
 C

ur
re

nt
, I

D
S

 (A
)

Gate Voltage, VGS (V)

0.1V

VDS = 10V

 

 

On-resistance (RON) measurements for a family of TFTs with 
different channel lengths (L) and a fixed channel width (W) of 150 
μm are shown in Figure 4.  With VGS = 40 V, the channel (Rch) and 
contact resistances (RDS) for SiNx-A devices are 9.4 MΩ/  and 0.24 
MΩ, as compared to those of 4.2 MΩ/  and 0.06 MΩ for SiNx-B 
devices, respectively. Therefore, faster switching with shorter RC 
time constant for the latter is expected. 
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CONCLUSIONS 

We studied the low-stress 200°C SiNx as a device dielectric layer 
from the standpoint of electrical stability in MIS capacitors and 
performance in a-Si TFTs.  C-V measurements show low trapped 
charge density of 6.9x1010 cm-2 with this SiNx, which yields a device 
mobility of 0.87 cm2/Vs and VT of 2.8 V when incorporating in a-Si 
TFT as gate and passivation dielectric. The channel and contact 
resistances of low-stress a-Si TFTs are also halved from those for 
high-stress devices.  Studies on the compliance and reliability of 
these low-stress devices on flexible PI plastic foil are currently in 
progress. 
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FIGURE 1. C-V curves for MIS capacitors with SiNx-A 
(high defect) and SiNx-B (low defect) films 

FIGURE 3. On-resistance of a-Si TFTs with SiNx-A 
(high defect) and SiNx-B (low defect) gate dielectric

FIGURE 2. I-V characteristics of a-Si TFTs with SiNx-A 
(high defect) and SiNx-B (low defect) gate dielectric 
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