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The advent of flexible substrates with thin film transistors (TFTs) over large 
areas (meters) makes large-area electronics (LAE) an attractive platform for 
integrating very large numbers of sensors onto surfaces over large areas.  
While TFT’s may directly interface to sensors and may be used for sensor 
addressing, to realistically communicate with the outside world, IC’s will 
probably be bonded onto the “sensor sheets” to create a “hybrid” LAE/IC 
system.    This paper examines novel architectures to minimize the number 
of physical interfaces to the IC, beyond the typical TFT-based active-matrix 
approach.     Approaches demonstrated include (i) high-frequency TFT-
based analog oscillators, and (ii) implementing elements of machine 
learning into TFT circuitry, so a higher-level information is sent to the IC’s, 
thus requiring fewer physical connections.   

 
Introduction 

 
Large-Area (and flexible) Electronics (LAE) on substrates such as plastic is a 

technologically attractive platform for deploying large numbers (potentially millions or 
billions) of sensors over surfaces, from strain sensors on bridges and airplanes to flexible 
neural sensing caps worn on the head [1].  Eventually the sensor information must reach 
conventional IC’s for external communication and system integration.  For sensor sheets 
on the order of meters in size, sending all data by wires to the connectors on the edge of 
the sheet could be problematic.  Rather, it is attractive to bond IC’s onto the sheet, resulting 
in a “hybrid electronic” system (Fig. 1).  With large numbers, clearly each sensor cannot 
be directly connected to an IC, for cost and practical reasons and also perhaps the reliability 
issues due to the substrate flexibility.  The classic approach to reduce the number of 
physical interconnects from the large area domain to the IC domain is active-matrix 
addressing enabled by low-performance thin film transistors (TFTs) fabricated directly on 
the plastic, architecturally similar to many conventional imaging arrays.  

 

 
Figure 1.  Concept of flexible hybrid LAE sensing sheet with embedded IC’s and 
integrated TFT circuitry.   
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Our work at Princeton has focused on using novel circuit, algorithmic, and machine-

learning approaches implemented in the TFT/LAE domain, to greatly further reduce the 
number of hard physical connections between the TFT/LAE domain and conventional IC’s. 
(Fig. 2).  The work has been demonstrated by prototype hybrid electronic sensor systems 
ranging from structural health monitoring [2-3], remote gesture sensing [4-5], brain wave 
(EEG) sensing [6], recognition of handwritten digits [7], pattern recognition of physical 
objects by weight distribution [8-9], to isolation of individual speakers (when many are 
speaking) via microphone arrays [10]. 
 

 
 
Figure 2.  Illustration of the problem of many physical connections from many sensors 
to the IC (or ICs), and approach of this work to use TFT circuitry to reduce the number 
of connections.   

 
A first set of work is based on the analog properties of TFT’s, especially via high-

frequency TFT oscillators.   While large feature sizes and low process temperatures 
typically lead to “low performance” TFT’s, with simple self-alignment methods we have 
extended ZnO TFT performance [11-12] to currently well over 2 GHz.  Along with HF 
thin film diodes [13], this enables near field coupling of signals and power between 
adjacent large area sheets [14, 15] and sending sensor data “off-sheet” by wireless methods 
[5].   With sufficient bandwidth, frequency-hopping (spread spectrum) methods can be 
used to send far more data for a fixed number of connections than with a conventional 
active matrix approach [16]. 

 
Second, in many real-world problems, the goal of sensor arrays is often some kind of 

pattern recognition, either the in time domain (e.g. seizure detection via neural sensors) or 
in the spatial domain (e.g. initial detection of a crack on a wing).   Machine learning (ML) 
is a powerful tool for this, conventionally done in software.  This requires sending all of 
the raw data from the sensors to the CMOS ICs and perhaps then to the cloud.  Instead, we 
have implemented various levels of machine learning on the sensor data directly in TFTs 
in the large-area domain, so that only the results are sent to the IC domain portion of the 
system.   ML conceptually consists of two steps:  (i) feature extraction and (ii) classification.  
Feature extraction can be implemented in several ways using digital TFT circuits.  
Successful classification requires “memory” to be integrated into TFTs to save the 
“learning.” We have directly implemented both steps in TFT circuits for problems such as 
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handwriting recognition from images in amorphous silicon sensors arrays, seizure 
detection, and tactile sensing [6-9]. 
 

Thin Film Transistor Technology 
 

Two TFT technologies were used in this work presented in this paper.  Both are 
bottom-gate (top source/drain contact) approaches similar to those widely used in the 
display field.  The first was an amorphous silicon (a-Si) technology with a maximum 
process temperature of 300 oC.  The gate insulator was typically 300 nm of SiNx, on top of 
which the channel layer of ~100 nm a-Si was deposited.  N-type source/drain layers were 
deposited and patterned on top of the a-Si and the metal source/drain contacts were on top 
of the n-type layers.  The insulator and semiconductors were deposited in an a load-locked 
multi-chamber plasma-enhanced chemical vapor deposition system (PECVD).    The gate 
layer typically was ~100 nm Cr, although sometimes a Cr/Al/Cr sandwich was used to 
lower the gate resistance.   The upper Cr layer was used to reduce hillocks that typically 
form on Al surfaces, leading to reduced breakdown voltages on the gate insulator.  The 
back (top) of the channel was passivated with SiNx.   

 

 
 (a)                                                              (b) 
 

Figure 3.  (a)  Cross section of ZnO TFT’s with maximum process temperature of 200 
oC (compatible with fabrication on plastic), and (b) approach towards self-aligning the 
metal source/drain contacts to the gate metal to reduce overlap capacitances [11].   

 
The second technology was similar in cross section (Fig. 3a) but used a thin (10 

nm) polycrystalline ZnO layer as the semiconductor.   A 40-nm Al2O3 layer served as the 
gate insulator, and the underlying gate was typically Cr or Cr/Al/Cr as with the a-Si TFT’s.  
No intentionally-doped semiconductor was used, and the source drain contacts were made 
by the direct deposition of Ti/Au on the ZnO.  Al2O3 was used for top passivation of the 
ZnO as well.   Both the Al2O3 and the ZnO were deposited by plasma-enhanced atomic 
layer deposition (PEALD) at 200 oC.   While the work presented in this paper was 
performed on glass substrates, because of the low maximum process temperatures, the 
fabrication processes for both the a-Si and ZnO TFT’s are compatible with fabrication on 
plastic.  

 
The two types of TFT’s had similar threshold voltages (1-2 V), but the ZnO TFT’s 

had a channel mobility (evaluated by the drain saturation current at ~ 6V gate voltage) 10-
20X larger than that of the a-Si TFT’s (0.5-1 vs. 10-15 cm2/Vs) (Fig. 4a).  Typical channel 
lengths for the TFT’s were 3-5 um, and the FET’s had large gate-drain capacitances 
because the lateral location of the top drain contacts was set by a separate lithography step 
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than the one determining the location of the underlying gate, necessitating a gate much 
wider than the channel.   For high performance, in some devices the source/drain contacts 
were “self-aligned” to the gate by exposing the photoresist which defined the source/drain 
from the bottom, through the substrate, so that the light was blocked by the opaque gate 
layer (Fig. 3b).  By thus reducing the overlap capacitances, high frequency performance in 
the ~5 MHz range for the a-Si TFTs and in the 1 GHz range for the ZnO TFT’s was 
achieved.  The higher ZnO TFT performance comes from a factor of ~10 for the higher 
mobility, and another factor of  ~10 from shrinking the channel length down to ~1 um.   

 

 
 (a)                                                              (b) 
 

Figure 4.  (a)  Typical parameters of the TFTs used in this work, and (b) high frequency 
(fmax) performance of ZnO TFTs using self-alignment [11, 12].  

 
 

Analog Oscillators for Wired and Wireless Data and Power Transmission 
 

The usual approach to capture data from many sensors is to send the analog data 
directly by a wire from each sensor to an IC for amplification and digitization.   Active 
matrices can reduce the number of connections to ICs (e.g. scanning one row at a time), 
but connections for each column are typically required.  We now explore how TFT 
oscillators can be used to reduce the number of “large-area to IC” physical wire connections.  
The work is largely based on “cross-coupled” TFT LC oscillators, a simplified equivalent 
circuit model of which is shown in Fig. 5a.   The capacitors are typically dominated by 
those of the TFT’s, and the inductors are made using large-area patterned metal layers.  The 
oscillator frequency f is simply ~ ଵଶగ √  .    Oscillation requires power gain at this 
frequency, which is reflected in the fmax parameter of Fig. 4(b), in turn requiring low 
parasitics such as gate line resistance.   

 
A first sensor system example is a large flexible sheet (40 cm x 40 cm) to designed 

to remotely sense gestures, a sort of “touch-pad at a distance” (Fig. 5b) [5].   An array of 
5-cm electrodes senses the capacitance to the user’s hand, which changes with the position 
and distance (10’s of cm) of the  hand.   Each electrode adds to the capacitance of a TFT 
oscillator, so that the oscillator frequency depends on the hand distance.  Rather than 
directly connecting each oscillator output to an IC for measuring frequency, note that the 
inductor radiates a time-varying magnetic field.  A pick-up loop wire is placed around the 
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array of sensing oscillators, each of which is tuned to a different base frequency by choice 
of inductor.  One row of oscillators is turned on a time, and a custom IC can measure the 
amplitude of each oscillator simultaneously and independently.   Row control signals are 
sent from the IC to the sensing sheet, but all of the data is transmitted to the IC in a wireless 
fashion, without any physical wired connection between the capacitance-sensing 
oscillators and the IC. 

 

 
                         (a)                                                              (b) 
 

Figure 5.  (a)  Schematic diagram of TFT-based LC oscillator, and (b) remote-gesture 
sensing sheet using LC oscillators to sense capacitance changes by frequency changes, 
and to inductively send sensed signal to and external pick-up loop [5]. 
 

 
Figure 6.  Use of oscillators and inductive coupling to send power and/or data from one 
sheet to an adjacent laminated sheet [14, 15]. 

 

 
 The use of TFT oscillators can be used not just to send data “off-sheet” to an IC for 
data acquisition, but also from one sheet to another.  Rather than integrating all system 
components (sensors, power sources, etc.) onto a single flexible sheet, one attractive 
approach for fabricating large-area systems is to fabricate each subsystem on a different 
sheet, and then laminate the sheets together to form the final system (Fig. 6) [14,15].   One 
then has to be able to send power and signals/data from one sheet to another.  Physical 
wired connections, such as “bump bonds” between sheets to another could be problematic 
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from both cost and reliability points of view, especially in flexible systems.   Thus we have 
used TFT oscillators to send both power and data from one sheet to another, using either 
inductive coupling (as shown in Fig. 6) or capacitive coupling.  For example, one sheet of 
flexible solar cells could harvest energy, which can then be sent to other sheets.   A critical 
point, however, is that a non-linear component (e.g. a thin-film diode) is needed to convert 
the AC power and data to DC signals (e.g. 5V power supplies or 0/5V digital data).   Thus 
one must also fabricate thin film diodes [13].   With such an approach, DC to DC power 
transmission efficiencies in excess of 80% between sheets can be achieved. 
 

As a last application of TFT oscillators, we examine a frequency-hopping system 
for acquisition of analog sensor data to potentially greatly reduce the number of data 
connections from a system of many sensors on a large-area sheet to the realm of ICs and 
digital computers.   Consider again a cross-coupled LC oscillator, to which a “tail” TFT 
has been added, with its gate connected to an analog sensor signal (in this case the voltage 
from a resistive pressure sensor) (Fig. 7a).  The sensor signal modulates (controls) the 
amplitude of the oscillation, so that the data is encoded in the oscillator amplitude, not in 
its frequency as in the earlier gesture-sensing example.  (AM stands for Amplitude 
Modulation, as in AM radio.)   

 

 
                                         (a)                                                              (b) 
 

Figure 7.  (a) TFT circuit for AM (amplitude modulation) of resistive pressure sensor 
data (VS.i) on top of 1 MHz carrier frequency, and (b) linearity of amplitude modulation 
with sensor data.  In (a), the capacitors are omitted for simplicity [16].  

 
To send data from the sensors to an IC, each oscillator can be given its own 

frequency (by design of C and/or L), and then a summing junction can be used to add the 
current output signals of all of the oscillators, so that only one wire goes to the IC.  The IC 
can then independently recover the independent sensor signals since each one is at a 
different frequency (Fig. 8a).  While attractive, this would limit the number of sensors per 
wired connection to the IC to the number of possible frequencies. 
 

To overcome this limit, a single tunable oscillator design was developed (Fig. 8b).  
Digital control signals from the IC are used to switch in or out capacitors on each oscillator, 
thus tuning its frequency.  For example, with 3 control signals, 23 = 8 frequencies and 8 

ECS Transactions, 92 (4) 121-134 (2019)

126



separate data channels are possible.   To expand the number of independent sensor channels 
with this architecture, the digital frequency control codes were changed as a function of 
time.  The control signals were wired differently (and uniquely) to the FET switches in 
each oscillator.  Thus the frequency changes in a unique pattern as function of time in each 
oscillator.  With advanced signal processing techniques, easily implemented in an IC, the 
oscillator magnitude and thus the data from each sensor can be recovered.    Such a 
technique is known as “frequency hopping” or “spread spectrum.”    For example, with 5 
digital control signals, 32 different frequencies can be selected from the circuit in Fig. 8b, 
leading to data from 32 sensors going to the IC on a single physical connection if each of 
the 32 oscillators had a fixed frequency.  With the frequency hopping method, it can be 
shown that this number increases combinatorically, from 32 to ~350.  With more digital 
controls signals, the factor of increase is substantially larger [16].  

                                         (a)                                                              (b) 
 

Figure 8.  (a)  Use of different TFT oscillator frequencies (one for each sensor) to send 
data from all sensors superimposed to CMOS IC’s over a single data line, where they 
can be independently recovered, and (b) digital-control tuning of frequency of each 
oscillator by switching in different capacitors.    (Sensor modulation TFT’s are not shown 
for simplicity.)  By changing the frequency of each sensor’s oscillator vs. time 
(frequency-hopping), the number of addressable sensors for a fixed number of digital 
frequency control signals X[i] goes up dramatically [16].  

 
 

Implementation of Machine Learning Algorithms into TFT Circuitry 
 

Up to this point this paper has focused on novel approaches to send data from 
sensors to an IC with a minimal number of physical connections to the IC, through the use 
of novel TFT circuits, especially oscillators.   The focus has been on sending all of the 
sensor data to the IC, which may be subject to bandwidth limitation, and in any case 
requires power.   In many applications, however, we are not interested in all of the sensor 
data per se, but rather patterns in the data.  Such patterns will tell us if a crack is beginning 
to form in an airplane wing, what sorts of hand gestures are being made, if EEG brain 
waves are indicating the onset of a seizure, and so forth.   

 
In these applications, “machine-learning” algorithms executed in software have 

recently become popular for recognizing patterns.  We now focus our attention on 
developing hardware circuits of TFT’s, rather than software programs, for implementing 
portions of machine-learning algorithms on sensor data to recognize patterns.  If successful, 
only high level information, such as if a crack on a bridge is forming [16], is then sent to 
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the ICs and computer side of the system.  That will of course require far fewer physical 
connections and less interconnect bandwidth and power than sending every piece of sensor 
data to the IC’s. 

 

 
Figure 9.  Conceptual stages of machine learning (feature extraction  and classification) 
between sensor data and ultimate decision.    We seek to implement these functions in 
hardware in TFT circuits to reduce the number of physical connections to the IC 
/computer domain and similarly reduce the amount of data being transferred to the 
IC/computer domain (adapted from [6]). 

 
On a high level, the problem can be represented by the diagram of Fig. 9.   Machine 

learning focused on pattern recognition can be represented two steps.  The first step is to 
recognize certain simple features in the data, with an output of how strong the data matches 
each of these simple features.  Certain types of data compression, such as compressed 
sensing, which reduces that data from N independent signals (where N is the number of 
sensors, potentially a very large number – e.g. millions) to a small number M of analog 
signals, one for each feature  can serve this role (M is typically 5-10 in our work).  After 
feature extraction, there is a second step of “classification,” which involves looking at the 
different signals for each feature and deciding if a certain overall general pattern exists or 
not.   We now examine two ML platform demonstrations, the first of which performs the 
feature extraction step in TFT’s and the classification step in an IC, and the 2nd of which 
also performs part of the classification in TFT’s as well.   
 

The first system was designed to recognize handwritten digits (Fig. 10a) [7].  The 
digits were projected onto an array of a-Si photosensors.  The data from each row of the 
data (NC columns) was then compressed into M separate outputs by what effectively is a 
linear matrix multiplication step.   Because the data is sparse (meaning mostly 0’s, meaning 
no handwriting), it can be shown that a matrix coefficients of random +1’s and -1’s 
(random projection compression) (Fig. 10b) preserves key features in the data, and can thus 
be thought of as a type of feature extraction (the first step in Fig. 9).  Because the key 
features are mathematically preserved, a high level of classification performance is 
possible directly from the compressed sensor data.   
 

Figure 11a shows the TFT circuit used to implement the data compression step.  On 
a row by row basis, the data of each sensor column is multiplied by 1 or -1, depending on 
the matrix coefficients.    For each of the M compressed outputs, the TFT contributes 
current proportional to the sensor data to one of two horizontal lines, depending on the +/-
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1 matrix  coefficient.  A custom circuit on the IC differences these two currents to get the 
compressed data.  
 

 
                                         (a)                                                              (b) 
 

Figure 10.  (a)  Architecture for performing data compression using TFT’s in Large-Area 
electronics to reduce NC columns of data to M compressed signals, and (b) mathematical 
operation performed in hardware implementing matrix multiplication by +/- 1 (random 
projection compression) [7].   

 
 

 
 
Figure 11. a-Si TFT characteristics and the  TFT circuit used to implement matrix-
multiplication compression algorithm of Fig. 10 in the large-area domain.   Each 
compression block puts out two current signals, with one subtracted from the other after 
the signals go from the large-area domain to a CMOS and a transimpedance amplifier 
(TIA) [7].  

 
For the step of the generalized machine learning system of Fig. 9, in this example, 

“one-versus-all” classification is performed for each digit using a SVM (support vector 
machine) after the large-area (TFT) signal processing – e.g. in the realm of IC’s and/or 
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computers.   For ease of testing, a MATLAB-implemented SVM classifier is used; however, 
such a classifier can be readily integrated in a CMOS IC on a hardware level [17].  
Critically, successful classification relies on the ability to train the classifier, in this case 
directly from the compressed data.  

 

                             (a)                                                              (b) 
 

Figure 12. (a) View of image sensor array and TFT compression circuits, and (b) results 
of positive detection and error rate for recognition of handwritten digits 0-9, as a function 
of compression factor = NC/M = 80/M [7].    

 
Figure 12a shows the a-Si image sensor array and the a-Si TFT compression circuit shown 
schematically in Fig. 11.  Fig. 12b shows the performance of the image classification step 
in recognizing handwritten digits 0 through 9, as a function of the compression factor in 
the data compression (feature extraction) step.  The compression factor CF is defined as 𝐶𝐹 ൌ ேெ  , where NC = 80 (columns of the imager) and M is the number of extracted features 
(rows in the compression matrix of Fig. 10) – how many signals are actually sent to the IC 
for that row.  Surprisingly, the true positive rate is consistently 80% of higher, even for a 
compression factor of 80 (meaning only one compressed output going to the IC for each 
row of the image).  The error rate, on the other hand, increases with the compression factor, 
but only reaches ~20% for its maximum value of 80.   
 

 
Figure 13. Architecture of “weak classification,” including feature extraction, performed 
by TFTs.  It consists of a matrix multiplication of the sensor data for each weak classifier 
output as in the data compression circuits of Fig’s. 11 and 12 [8].  However, in this case 
the matrix coefficients are not simply +/- 1, and have values determined by learning 
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algorithms and feedback.  The final decision is made by a weighted voter implemented in 
an IC.   

 
We now examine a second pattern recognition system, employing machine learning 
implemented in TFTs, in this case a system to recognize and classify shapes, not 
handwritten digits, from their images, shown architecturally in Fig. 13.  As in the previous 
case we start with images captured by an a-Si array, and use TFT hardware to implement 
matrix multiplication on each column of date.  In this example the TFT hardware circuits 
will implement part of the classification step (part of the ultimate decision making), not 
just perform data compression/feature extraction.    Architecturally, two things differentiate 
this sytem from the first example (Fig. 13).    First, the matrix coefficients are not just +/-
1, but are weighted according to a training algorithm, to achieve a so-called “weak 
classification” result.   This is achieved by a series combination of TFT’s, one with a gate 
voltage determined the the sensor output (VSi) and the other with the gate connected to a 
stored “weight” value VBi (Fig. 14a).    
 

                             (a)                                                                                      (b) 
 

Figure 14. (a) TFT circuit used to implement analog matrix-multiplication for one output 
of the weak classifier of Fig. 13. VS1 is the sensor signal and VB1 is the “weight” 
coefficient which is selected by training.  (b)  The weight coefficient is stored as the 
threshold of the TFT.   The threshold is adjusted to a desired value by large gate voltage 
pulses to inject electrons into the gate dielectric.  Amorphous silicon TFT’s with a SiNx 
gate dielectric were used for this example [8]. 

 
The value for each of the NC x M weights is chosen by a training step.  This means 

optimizing the weights based on presenting images of known shapes to the system.   
Because the learning is taking place on the level of TFT’s, and not on an IC or software 
level, the “learning” must be somehow physically stored in the large/area TFT domain.  
This was effectively achieved by adjusting the threshold voltage of of the lower (“weight”) 
TFT’s in the circuit of Fig. 14a (and holding the actual gate voltage of all of the lower 
TFT’s fixed when processing data.   As an outcome of the learning step, a selected number 
of  high gate voltage pulses where applied to each of the lower TFTs.  This caused the 
injection of electrons into the gate dielectric, some of which get trapped to raise the TFT 
threshold voltage.   Because the electrons are trapped, this adjusted threshold voltage is 
then “stored.” 

 
These TFT classifiers are referred to as “weak” because they do a poor job of 

recognizing complex patterns.   After the weak classifier step, the M weak classifier outputs 
where individually sent to an IC.  The final “strong classification” step was performed in 
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software using a “weighted voter” approach based on these M inputs, following the 
algorithm known as adaptive boosting (AdaBoost) [18].  Results for recognizing five 
different shapes are shown in Fig. 15.  After training, the ability of the system to correctly 
recognize (true positive, tp) and reject (true negative, tn) each shape type is shown in Fig. 
15 in blue.   While the success rates depend somewhat on shape type, note that optimal 
results are achieved already using only 3 weak classifiers, i.e. three rows in Fig’s. 13 and 
14, representing only 3 signals going to the IC (M = 3).   Also shown in red in Fig. 15 are 
results from a classical support vector machine (SVM) processing of the images in software.  
In most cases, 3 weak classifiers implemented in TFT’s are sufficient for the quality of the 
pattern recognition to approach that of the conventional software based machine learning. 

 

 
 
Figure 15. (a) Ability of the weak classifiers in the TFT domain (coupled with weighted 
voter in CMOS) to recognize shapes (insets), which were projected onto an array of a-Si 
detectors.   The results (blue) improve with the number of weak classifiers, and are 
compare favorably to a conventional SVM machine learning algorithm performed on the 
images in software (red) [8]. 

 
 

Summary 
 

Flexible hybrid TFT/IC systems are an attractive physical platform for the 
implementation of large numbers of sensors over areas on the size scale of people or larger.  
This paper has examined the use of novel TFT circuits to reduce the number of physical 
connections between the “large-area domain” (the distributed sensors and TFTs) and the 
“conventional computer domain,” represented on a physical level by IC’s.   One enabling 
technology is oscillators implemented in TFT’s, which can wirelessly transmit data and 
power over short distances, and also enable novel data encoding techniques such as 
amplitude modulation and/or frequency hopping.    A second enabling approach is the use 
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of TFT circuits to execute machine-learning algorithms directly in TFT hardware, so that 
only higher-level information is sent to IC’s and the external world. 

 
Current and future directions include new capabilities enabled by the recent GHz 

frequency oscillators enabled by ZnO TFT’s and self-alignment, compared to the MHz 
range of frequencies used in the systems examples of this paper.  On the machine learning 
side, physical-related issues are thin film approaches for implementing memory (i.e. 
“learning”), and the effect of device to device TFT variations (or even faults) and device 
drift over time, on the ML algorithms implemented in hardware.  An important issue in this 
case is expected to be the nature of the sensor signals themselves and their “sparsity.”   On 
a higher architectural level, emerging directions are systems which preserve certain 
contexts of the data, such as its physical location, and the reconstruction of the original 
signals from compressed data [8, 9].  
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