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Introduction

Large-area electronic (LAE) metal-oxide thin-film transistors (TFTs) with f; and/or fy.x beyond 1 GHz
demonstrated over recent years [1-3] enable critical circuits and systems towards wireless applications in Internet of
Things and 5G/6G (e.g., a 1-GHz phased array for far-field radiation beam steering [4]). Since most existing
approaches towards GHz TFTs rely on improved charge-carrier mobility through high-temperature deposition of
semiconductors and/or submicron TFT feature size achieved by electron-beam lithography, they are incompatible with
low-cost, large-area, and flex-substrate fabrication of TFTs. By additional dependence on gate resistance R, fyax
opens broader device engineering space to maintain large-area and flex-compatibility, and motivates fy;4x-limited
circuit/system topologies [4]. Here, we show that with optimal TFT bias voltages and reduced R through TFT width
scaling, a record-high fj;,x exceeding 3 GHz is achieved in self-aligned zinc-oxide (ZnO) TFTs with gate length of
~1 um, patterned by photolithography, with a maximum process temperature of ~200 °C. A high-frequency non-
quasi-static TFT model [5] is used to guide the device engineering efforts towards this result.

Device Fabrication

Fig. 1(a) shows the cross-section of the bottom-gate staggered ZnO TFT [5]. Its key features include: (1) a composite
gate electrode of 10-nm Cr/110-nm Al/40-nm Cr to reduce R;; (2) photolithography-only patterning (no electron-
beam lithography) for minimum gate length of ~1 um; (3) self-aligned source/drain metal patterning, resulting in
length of source/drain-to-gate overlaps Ly, ~0.5 um.

Device Characterization Results and Analysis

Fig. 1 shows typical transfer and output curves of ZnO TFTs, and their DC metrics. Fig. 2 shows the high-frequency
TFT model and equations for TFT parameter extraction. With the TFT characterized as a two-port network, values for
TFT parameters (i.e., Cgs, Cop, Gm» T» Tp» Rg, and Cps) can be extracted from the measured Y-parameters [5]. Cgs,
Csp, Rg, and Cpg are mostly determined by TFT layout and geometry, and thus they are nearly independent of bias
voltages. On the other hand, the strongly voltage-dependent g,,, and 7, require identifying the optimal bias voltages
for maximum fy4x. Figs. 3(a) and 3(b) show the extracted g, and r, for W /L = 50 um/~1 um. The competing
effects of g,,, (high V¢ desired) and 7, (low V5 desired) on f3,4x lead to optimal bias voltages of Vg = Vpg = 6V in
Fig. 3(c), which maximize f4x in the saturation region, below the thermally-induced breakdown limit [5].

Beyond the optimization of TFT bias voltages, fy;4x can be further improved by reducing R; through TFT width
scaling, since R; is the major resistive loss within TFTs. Figs. 4(a) and 4(b) show the maximum available power gain
MAG and stability factor k for a range of channel widths W, measured at Vg = Vg = 6 V. Fig. 4(c) shows that an
fuax exceeding 3 GHz is observed in the W = 15 um TFT. As compared to TFTs with larger W, the W = 15 um
TFT shows slightly worse g,,, and t in Fig. 5(a), due to lower I, current and thus smaller Vpg - s power, as less
heating lowers the effective electron mobility [6]. While this reduces the MAG of the W = 15 um TFT at low
frequencies in Fig. 4(a), the reduced R; and thus k < 1 maintained up to 3 GHz lead to fj;4x beyond 3 GHz.
Finally, the TFT parameters extracted from the width scaling experiment (the value for R is estimated from the sheet
resistance and geometry of the gate electrode), summarized in Fig. 5(b), are used to simulate MAG and k for the W =
15 um TFT. Figs. 5(c) and 5(d) show that the simulated MAG and k closely match measurements up to 3 GHz,
validating the device characterization and the high-frequency modeling.

Conclusions

Through the optimization of bias voltages and the reduction of resistive loss within TFTs achieved by width scaling,
this work demonstrates self-aligned ZnO TFTs with fy;4x exceeding 3 GHz, which is among the highest for metal-
oxide TFTs with large-area and flex-compatibility. These results suggest that, even with limited channel mobility and
using photolithography, TFT parameter engineering is a promising path to GHz LAE systems with fj;,x-limited
operation. Therefore, robust GHz modeling methodology will be essential to consolidate the understanding of TFT
operation, and to guide future device optimization (e.g., to further reduce R for higher fi;4x).
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transfer and (c¢) output curves of ZnO TFTs with W /L = 150 um/1 um. (d) Mean and standard deviation of device
figures of merit, extracted from 10 ZnO TFTs measured at DC (Vg = Vpg = 6 V). Adapted from [5].
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Fig. 2. High-frequency small-signal model for ZnO TFTs and equations for device parameters extraction.
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Fig. 3. Values extracted from measurement for (a) g,, and (b) 7,, and (c) measured fy;4x of a ZnO TFT with W /L =
50 um/~1 um, at various Vg and Vps. The yellow-shaded region labeled “Thermally unstable” corresponds to the
bias voltages at which thermally-induced breakdown occurs due to TFT heating. The grey-shaded region labeled “Not
saturated” corresponds to bias voltages at which the TFT is in the linear instead of saturation region, assuming V; =
2.4V (Fig. 1(d)). These two unwanted situations limit the feasible range of Vs and Vj¢ for maximizing fy;4x.
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Fig. 4. Measured (a) MAG and (b) k of ZnO TFTs with L = ~1 um and various W, at Vg = Vs = 6 V. (¢) Plot of
fuax extracted from (a) (where MAG drops below 0 dB) versus TFT width W. The frequency limit of the Agilent
E5061B vector network analyzer used for high-frequency TFT characterization is 3 GHz.
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Fig. 5. (a) The values extracted from measurement for normalized g,,, and 7, versus TFT width W. (b) The device
parameters for W = 15 um TFT. Comparison of measured and simulated (¢) MAG and (d) k for W = 15 um TFT.
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