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Strained-Si-on-Insulator MOSFET without Relaxed SiGe Buffer Layer
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ABSTRACT

Strained Si-based metal-oxide-semiconductor field-effect transistors (MOSFETSs)
have drawn increasing attention for superior carrier mobility. These are typically grown
on relaxed SiGe buffer layers or on top of thin relaxed SiGe layers that are transferred to
an insulator for a SiGe-on-insulator structure. In this work, we demonstrate strained Si
MOSFETs febricated on compliant borophosphorosilicate glass (BPSG) without an
underlying 8iGe buffer layer. This overcomes any potential process or device drawbacks
due to presence of a SiGe layer.

We first investipate the relaxation of 5iGe on BPSG, which mdmates that
dislocations do not contribute to the strain relief. We then show that a bi-layer structure
can improve surface roughness during relaxation. In addition, we observe stress balance
of bi-layer structures on BPSG, which enables tensile Si using a 8iGe/Si/BPSG structure.
Finally, we fabricate n-MOSFETs on tensile SU/BPSG and observe mobility enhancement
due to the strain.

EXPERIMENTS AND ANALYSIS

Strained SiGe on BPSG films were fabricated by wafer bonding and Smart-cut®
processes [1]. The host wafer was a silicon wafer on which 30 nm commensurately
strained Smnﬁmgu was grown followed by 2 nm Si cap. This wafer was then implanted
with Hy* at an jon energy of 180 keV and a dose of 4.5x10' ¢m™, The handle wafer was
coated with 200 nm BPSG (4.4% B and 4.1% P by weight). The wafers were cleaned and
bonded at room temperature, The wafer pair was annealed at 250°C for four hours to
enhance bond strength and then annealed at 550°C in N; ambient to separate the top layer
from the host substrate at the depth of the hydrogen implant. The remaining silicon on top
of the SiGe was removed by selective etching to leave approximately 30 nm
compressively strained SipseGegso on the BPSG. The SiGe was then patterned to square
islands of various sizes from 10 to 200 pm to study relaxation.

Lateral expansion and buckling simultaneously contribute to strain relaxation of
SiGe islands on BPSG when the BPSG is sofiened during anneals [2]. Lateral expansion
initiates at the boundary of islands, whereas buckling occurs near the center of islands
where it is difficult to relieve strain by lateral expansion. Fig. 1 shows an optical
micrograph of a corner of a 100 pm x 100 pn SiGe island on BPSG after 90 min anncal
at 790°C, It shows three distinct relaxation regions: (1) Buckling is entirely avoided in the
comer of the island where lateral expansion takes place quickly to relax strain, (2)
buckling appears in areas where lateral expansion only releases strain along one
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direction, i.e., normal to the edge, and (3) buckling appears in the island center where
strain is only relaxed by buckling. ; e '
~ To improve surface.roughness caused by buckling during relaxation anneals and
to achieve large flat islands, a bi-layer structure was adopted. A bi-layer is effectively
more rigid than a single layer, and thus less prone to buckling. Prior to SiGe relaxation, a
Si/SiGe bi-layer structure was formed by deposition of an epitaxial Si layer on top of
SiGe/BPSG using rapid thermal chemical vapor deposition (RT-CVD) at 700°C. Figure 2
shows the dramatic improvement of surface roughness after relaxation anneals when a
Si/8iGe bi-layer structure is employed; rms roughness of less than 1 nm can be achieved.
The final strain in the SiGe and Si films upon equilibrium is governed by stress balance
between the layers, namely zero net stress between the SiGe and Si films in any vertical
plane. For the first time, stress balance between layers on compliant substrates is
observed. Figure 3 .shows good agreement between experimental data and the stress
balance theory, which assumes no dislocations; To further determine dislocations’
possible role in the SiGe relaxation on BPSG, defect etching of 90 nm Sip7Gegs grown
on relaxed 30 nm Sip 7Gey 3/BPSG and on regular Si was performed (Fig. 4). An observed
defect density less than 1x10° cm™ on SiGe/BPSG shows that dislocation-induced
relaxation is not dominant and that SiGe relaxation on BPSG is a good approach to
achieve high quality relaxed SiGe. : : : A
- We now use this approach to create strained Si on insulator without SiGe (Fig. 5).
A structure of a relaxed 25 nm Si cap on fully strained 30nm Sig;Geo3 was transferred to
. 200 nm BPSG on a handle wafer, so that the unstrained Si layer was on the bottom after
- the transfer. Then the continuous SiGe/Si films were patterned into square islands of sizes
from 80 pm to 200 pm. During a 90 min anneal at 800°C, the SiGe/Si islands expanded
laterally to move toward stress balance, resulting in tensile Si on the bottom. Finally, the
top SiGe film was selectively etched to yield tensile Si on BPSG. : '
. N-channel MOSFETs were fabricated using the tensile Si as the device channel.
‘The gate stack includes 300 nm SiO; and 80 nm poly-Si, both deposited at 625°C by
LPCVD. The poly gate and source/drain were doped by phosphorus ion implantation
(25keV - at dose 1x10'> cm™). Dopants were activated by a 30 min anneal at 700°C.
Unstrained Si n-MOSFETs on BPSG were fabricated in the same batch for comparison.
An electron mobility enhancement of approximately 20% was clearly seen in the strained
Si n-MOSFETs compared to the unstrained Si devices based on the measured’
transconductance (Fig. 6). = ' L s :

SUMMARY °

We demonstrate relaxed SiGe and strained Si on insulator by a compliant BPSG
- film. Stress balance in Si/SiGe films on BPSG is observed and used to realize strained Si -
on insulator without SiGe. Finally, strained Si on insulator n-MOSFETSs are fabricated
and electron niobility enhancement is observed. ' i L

This work is silppbrted by DARPA and ARO
" Reference: & i -

1. K.D. Hobart, et. al.‘Journal of Electronic Materials, 29, 897 (2000).:
2. H. Yin, er. al. Journal of Applied Physics, 91,9716 (2002) . !
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Fig. 1. Optical micrograph of a corner of
100 pm x 100 pm Sig;Gey 3 island after a
90 min anneal at 790°C in nitrogen

Fig. 4(a)

Fig. 4(b)

Fig. 4. Defect etch of annealed 90 nm Sig ;Ge, ; grown
on (a) 20 pm islands of relaxed 30 nm Sig 7Ge, s/BPSG
and (b) Si substrate

57

Fig. 2(;1) Fig. 2(b)

Fig. 2. Optical micrograph of 500 pm islands after
long anneals (a) 30 nm Siy ;Ge, /BPSG (b) 31 nm
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Fig. 3. Equilibrium biaxial strain of 30nm SigGeq 3
and Si films at the center of a 30 um x 30pm island as

- afunction of Si film thickness. Open symbols are

' experimental data. Lines are theoretical calculations of
Stress balance. The strain was measured by micro-
Raman spectroscopy.

compressive
SiGe compressive SiGe
Reloxad 81 Tensile Si Tensile Si
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Si Si Si
Fig. 5(a) Fig. 5(b) Fig. 5(c)

Fig 5: Stress balance enables tensile Si on BPSG: (a)
SiGe/Si islands on BPSG were fabricated by SiGe
epitaxy, wafer bonding, Smart-cut and RIE etch; (b)
SiGe and Si films expand towards stress balance in a
90 min anneal at 800°C in Ny; (c) Removal of the
top SiGe film results in strained Si on insulator.
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Fig. 6. Transconductance as a function of gate
voltage for strained and unstrained Si n-MOSFETs

(L =20 um, W = 200 pm). The high gate voltages"

are due to a very thick (300 nm) gate oxide.
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