94CH35706

international ELECTRON DEVICES meeting

1994

SAN FRANCISCO, CA DECEMBER 11–14, 1994

ECHNICAL DIGES

Sponsored by Electron Devices Society of IEEE

Si/Si_{1-x-v}Ge_xC_v/Si Heterojunction Bipolar Transistors

L.D. Lanzerotti, A. St.Amour, C.W. Liu*, and J.C. Sturm

Dept. of Electrical Engineering, Princeton University, Princeton, NJ 08544

*current address: Dept. of Electrical Engineering, National Chunghsing University, Taichung, Taiwan 40227

Recently, great interest in silicon-based heterojunction devices has been caused by high-speed Si_{1-x}Ge_x base HBTs with f_t exceeding 100 GHz. [1, 2] To extend silicon heterojunction technology beyond strained Si_{1-x}Ge_x, several groups have pursued Si_{1-x-y}Ge_xC_y alloys, which are of interest because carbon is expected to allow the possibility of strain-free silicon heterostructures which will eliminate a major constraint on device design. Several groups [3,4] have succeeded in growing strain compensated Si_{1-x-y}Ge_xC_y layers on silicon, but to date there have been no Si_{1-x-y}Ge_xC_y electrical devices of any kind or experimental bandgap studies reported. In this paper we present the first electrical devices of any kind containing Si_{1-x-y}Ge_xC_y alloys and present preliminary measurements of Si_{1-x-y}Ge_xC_y bandgaps. Temperature studies of these devices indicate that the partially strain compensated Si_{1-x-y}Ge_xC_y bandgap remains comparable to the bandgap of strained Si_{1-x}Ge_x, a most surprising and fortuitous result.

The epitaxial layers were grown by rapid thermal chemical vapor deposition (RTCVD). The base layers were grown at 550°C using a mixture of DCS, germane, diborane, and methylsilane (the carbon precursor). The emitter was then grown at 700°C using silane and phosphine. Four device structures were fabricated with different levels of C in the base while holding the Ge content fixed. Figure 1 shows x-ray diffraction (XRD) spectra from the four HBT structures. The base of the control device (1665) contained 25% Ge and no C. As C was added, note that the peak of the strained Si_{1-x-y}Ge_xC_y layers moved towards the Si substrate peak, indicating a reduction of strain. From Fig. 1, C fractions of 0.001, 0.007, and 0.011 were estimated for samples 1673, 1675, and 1676, respectively.

Double-mesa transistors (Fig. 2) were fabricated by a very simple three mask process using a combination of selective wet and dry etching designed to examine the transport of electrons in the base and to determine the bandgap of the base, not for high performance. Figure 3 shows the I-V characteristics of the BE and BC diodes from the device with 0.7% C. Figure 4 shows the HBT characteristic from the same sample (0.7% C), showing well behaved transistor characteristics with $V_A > 100V$ and a $V_{B,CEO} = 5V$. The low gain (~2.5) was limited by excessive base current, presumably due to recombination at the unpassivated mesa edges. Note that the collector current, which depends on transport across the Si_{1-x-V}Ge_xC_V base, was ideal (see Gummel plot, Fig. 5).

Figure 6 shows the ratio of the collector currents in devices with 0.7% and 1.1% C in the base to that of the control device as a function of inverse temperature. Using this standard technique for narrow base HBTs [5], the slope can be used to give the difference in bandgap of the base regions. The curves are nearly flat, indicating that the bandgap of the Si_{1-x-y}Ge_xC_y alloys did not increase as C was added. This indicates that it should be possible to grow completely strain-free Si_{1-x-y}Ge_xC_y structures which still have a substantial bandgap reduction compared to Si. The HBT results are consistent with photoluminescence of similar Si_{1-x-y}Ge_xC_y layers grown in our lab (Fig. 7), which also show that the bandgap of strained Si_{1-x-y}Ge_xC_y on Si does not increase as C is added. These results appear to be consistent with the theoretical calculations of Ref. 6 which predict a surprisingly low bandgap for dilute C alloys due to strong atomic relaxation around certain substitutional C sites.

In summary, we have demonstrated the first electrical devices of any kind in the $Si_{1-x-y}Ge_xC_y/Si$ heterojunction system. The HBTs demonstrated the potential promise of this new material system and also show that it may be possible to achieve a significant bandgap offset relative to silicon with a strain-free material.

This work was supported by ONR, NSF, and SRC. We thank Y. Lacroix of Simon Fraser University for PL measurement and D. Quiram of Princeton University for XRD.

References

- 1. E. Kasper, A. Gruhle and H. Kibbel, Tech. Dig. IEDM (1993) 79.
- 2. E. Crabbe, B.S. Meyerson, J.M.C. stork, and D.L. Harame, Tech. Dig. IEDM (1993) 83.
- 3. J.L. Regolini, F. Gisbert, G. Dolino and P. Boucaud, Mat. Lett. 18 (1993) 57.
- 4. K. Elbert, S.S. Iyer, S. Zollner, J.C. Tsang, and F.K. LeGoues, Appl. Phys. Lett. 60 (1992) 3033.
- 5. C.A. King, Heterostructures and Quantum Devices, N.G. Einspruch and W.R. Frensley, ed., Academic Press (1994) 152.
- 6. A.A. Demkov and O.F. Sankey, Phys. Rev. B 48 (1993) 2207.

Fig. 1. X-ray diffraction spectra from four SiGeC HBT structures.

Fig. 2 Cross section of the SiGeC HBT structure.

Fig. 3. Emitter-base and collector-base diodes of SiGeC HBT with 0.7% C in the base. 15.7.2

IEDM 94-931

Fig. 4. Common-emitter characteristics of SiGeC HBT with 0.7% C in the base.

Fig. 5. Gummel plot of SiGeC HBT with 0.7% C in the base.

15.7.3

Fig. 7. Photoluminescence spectra from two quantum wells.

932-IEDM 94