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ABSTRACT

The growth properties of /3-SiC on (100) Si grown by rapid thermal chemical vapor
deposition, using a single precursor (methylsilane) without an initial surface carbonization
step, were investigated. An optimun growth temperature at 800'C was found to grow single
crystalline SiC. The single crystalline SiC films were used to be the buffer layers for the
growth of subsequent poly Si films. For the poly Si grown at low temperature (625°C), the
(110) Si diffraction was found to be the dominant peak in the X-ray diffraction spectra at
the initial growth stage, while the poly Si grown on oxide was dominated by (111) texture.
A small average misfit (4 %) between (110) Si planes and (100) SiC planes was proposed
to explain this effect. To apply the Si/SiC/Si multilayers, SiC/Si heterojunction bipolar
transistors (HBT's) were fabricated and compared to Si bipolar junction transistors.

INTRODUCTION

Despite the success with Si/SiGe/Si heterojunction bipolar transistors(HBT's), there
is still a strong desire for a widegap emitter material on Si. Such a widegap emitter on a
Si base could yield devices with better high temperature performance than Si/SiGe HBT's
(due to higher bandgap) and might be easier to be integrated[l]. Recently, the Sil-,C,
alloys have been studied to serve this purpose[2]. However, only a small fraction of C
(< 2%) can be incorporated into Si to form device quality materials and as a result, very
limited band offset can be obtained. A large band offset can be used, if O3-SiC (bandgap 2.2
eV)/Si heterostructures can be fabricated, despite of 20 % mismatch of lattice constants
and 8 % mismatch of thermal expansion coefficients between 3-SiC and Si. We, therefore,
performed the Si//3-SiC heterostructural growth on (100) Si substrates by rapid thermal
chemical vapor deposition, and applied this technology to fabricated Si/SiC HBT's.

O-SiC GROWTH on Si

The SiC films were deposited on tilted (40 towards < 110 >) and non-tilted Si
substrates (within 10 off) with a diameter of 100 mm by Rapid Thermal Chemical Vapor
Deposition (RTCVD) at a growth temperature of 700-1100 0C. The growth pressure was
1 torr with a 1.5 sccm methylsilane (SiCH6) flow and a 500 sccm hydrogen flow. The
growth temperature(700-800'C) was accurately determined by the infrared transmission
technique[3]. Growth temperatures higher than 800'C were controlled by the tungsten-
halogen lamp power which was previously calibrated with a thermocouple welded onto a
Si wafer. The SiC thickness was measured by fitting the optical reflection spectra from 500
to 700 nm with the SiC index of refraction of 2.6. The growth rate in the range 700-800'C
varied exponentially with the inverse of temperature and the activation energy for this
surface-reaction-limited growth was 3.6 eV. This is higher than that of pure silicon growth
using silane as a precursor (- 1.7 eV)[4] and may reflect the strong C-H bonding energy.
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At a higher growth temperature (800-1100-C), the growth rate had a weak temperature
dependence, indicating mass- transport-limited growth.

The crystallinity of the films was studied by XRD (X-ray diffraction) and TEM
(transmission electron microscope). For the films grown at 750'C, the XRD spectrum of
a 80nm film on non-tilted substrates exhibited a single crystalline feature with a broad
unresolved CuK0 l and CuKa2 (400) peak (Full Width Half Maximum, FWHM, of 20 is
about 1.60). But the TEM diffraction pattern of the same sample showed evidence of
some slightly in-plane rotated textures and very fine spots in the < 110 > direction. This
indicates the poor crystallinity of the 750 'C films. The crystallinity can be improved by
increasing the growth temperature to 800'C. The XRD spectrum (Fig. 1) of a 0.23 /im SiC
film grown at 800 'C on non-tilted substrates showed that the FWHM of unresolved CuK0

(400) peak was as small as 0.75', which was similar to the value (0.65 - 0.7°) of 0.3 Yim
commercial (100) SiC on Si[5], which was grown at a much higher temperature (_> 1300°C).
The TEM diffraction pattern also displayed a well-defined single crystalline feature. TEM
also showed very high densities of stacking faults and dislocations, similar to the films of
similar thickness grown by conventional high temperature growth techniques. The Fourier
transform infrared spectra of a 0.23 1 m 8000C grown film on non-tilted substrates displayed
an absorption peak at 796 cm-1 (TO phonon absorption) with a FWHM of 50 cm-', which
is similar to that of the film grown by conventional high temperature growth methods. The
Raman spectrum of the same sample showed a broad peak at 960 cm 1 with FWHM of 60
cm-1 and a sharp peak 510 cm- 1. The 510 cm- 1 peak is associated with the Si substrates,
not SiC epilayers. The peak near 960 cm- 1 is probably due to a combination of the LO
phonon scattering (- 970 cm-1 ) and interface defects between SiC and Si[6]. The XRD
spectrum of the films grown at 1000 'C and 1100 0C, however, reveals extra (111) and
(220) peaks, indicating the growth of polycrystalline material. Therefore, the 800 'C is the
optimum growth temperature for the single crystalline /3-SiC. The 800 0C-grown films were
used to fabricated Schottky diodes with reverse breakdown voltage of 59 V[7].

Poly-Si GROWTH on SiC

The poly Si films were deposited on the 8000C-grown SiC buffers at the temperature
of 625 - 1000 'C at 6 torr using dichlorosilane(26 sccm) or silane(2 sccm) with hydrogen
flow rate of 3 slpm. The same growth conditions on Si substrates yield to single crystalline
Si layers. At high growth temperature (800 - 1000 0 C), the (110), (111), and (311) textures
of 0.6 ,m poly Si grown by dichlorosilane have been observed by XRD(Fig. 2), and the
relative contents of (311) and (111) decrease as the growth temperature decreases, very
similar to the poly Si growth on oxide with similar thickness[8]. For poly Si grown on oxide
at low temperature (<700 0C), the 0.6 ym poly Si film was dominated by (111) textures[8].
However, the poly Si with a thickness of 0.1 1 m grown at 625 0C on the SiC buffer using the
silane precursor exhibits only (110) texture without diffraction peaks from other textures
such as (111) and (311) in the XRD spectrum, but the (400) peak might be hidden behind
the (400) Si peak of the substrate. The dominating diffraction of (110) texture in thin
ploy Si on SiC can be understood by the small misfit of 4% (area average of two transverse
direction) between (110) Si plane and (100) SiC plane as shown in Fig. 3, which makes it
possible to grow single crystalline Si. However, due to the (100) Si substrate interference,
the single crystalline growth of the epitaxial Si can not be confirmed. The poly grown Si
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Fig. 1 The XRD spectrum of a 0.23 gim single crystalline SiC

Si at 800 0C.
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Fig. 2 The XRD spectra of poly Si films grown on (100) SiC at (a) 1000, (b) 800,

and (c) 625 'C.
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on SiC will be used as the ohmic contact material in SiC/Si HBT's.

SiC/Si HETEROJUNCTION APPLICATIONS

A current gain of 800 has been obtained by Si/fl-SiC HBT's grown by a special
technique at 1000 °C on (111) Si substrates[9]. However, the high temperature process of
1000 'C would produce excessive back diffusion and prevent the integration with other Si
devices. The single crystalline /3-SiC grown at 800 'C on (100) Si substrates was used for
the wide bandgap emitter material of Si/SiC HBT's. Fig. 4 displays the layer structures of
a Si control device (Si bipolar junction transistors) and a SiC/Si HBT. In the SiC/Si HBT,
there is an additional 2000 A unintentionally doped SiC layer (n = 1018cm- 3 ) between the
n-Si emitter and the n+-Si emitter. The poly n+ Si emitter on the SiC layer grown at 800'C
in the SiC/Si HBT structure was used to form better ohmic contacts than directly on SiC
layers. The n-SiC emitter should block back-injected hole current (base current) ideally and
thus should increase the current gain. The transistors were fabricated using a simple mesa
process, which was detailed in [10]. The base contact was established by boron implant.
Before base implantation, the emitter mesas were formed by plasma etching (SF 6 for Si and
8%02 in CF 4 for SiC). The devices were isolated by plasma-etched mesas and passivated
with Si0 2 deposited by plasma deposition at 350 °C. Before contact metallization, the
wafers were given a RCA clean, and annealed at 700°C for 30 min in a forming gas. The
emitter size was 60ptm x 601im for both HBT's and BJT's.

Fig. 5 shows the base current and collector current as a function of the emitter-base
voltage (Gummel plot). The collector-base voltage is fixed at 2 V. The collector currents
for both devices showed same voltage (Vbe) dependence with ideality factor of 1.0 and the
same absolute magnitude. This result is expected, because both devices have the same base
structures. The base currents also showed near-ideal behavior with ideality factors of 1.2
and 1.1 for Si BJT's and SiC/Si HBT's, respectively. However, the desired enhancement of
current gain (le/Ib) was not observed, because the base currents of SiC/Si HBT's was higher
than thoses of Si BJT's. The increase of base currents in the SiC/Si HBT's, compared to
the Si BJT's, was probably due to the interface defects between Si and SiC, which acted as
recombination centers for back-injected holes and thus increased the hole currents, instead
of being the barrier to stop the hole currents. Note also the apparent high series resistance
of the HBT's. This is thought to result from the SiC layer in the emitter. Furthermore,
the improvement in the ideality factor in the HBT's indicates that the excess base current
is occuring in a neutral device region, and not in a space charge region or a device edge
(surface). This is further evidence that the base current is occuring within the n-type
emitter region. To reduce the defect density at the interface and to increase the current
gain, a passivation technology of the interface will be desired in the future.

SUMMARY AND ACKNOWLEDGMENTS

Si/fl-SiC heterostructure has been grown at 800'C on Si. The growth temperature
of 800 'C was optimun for single crystalline SiC layers on Si (100) substrates. The thin
(0.1 ym) poly Si grown on SiC at 625'C has dominating (110) textures, in contrast to the
growth on oxide, where (111) textures dominate. The SiC/Si HBT's has been fabricated,
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but the density of interface defects should be further reduced for desired SiC/Si HBT per-
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